论文标题

在耗散横向ISING链中

Kibble-Zurek mechanism in a Dissipative Transverse Ising Chain

论文作者

Oshiyama, Hiroki, Shibata, Naokazu, Suzuki, Sei

论文摘要

我们研究了横向iSing链中的千泽 - ZUREK机制,该链与耗散性玻色子浴,利用了一种新的数值方法,具有无限的时间不断发展的块分解,并结合了离散的时间路径积分。我们首先显示地面相图,并确认在存在系统浴耦合的情况下发生量子相变。然后,我们介绍了自旋哈密顿量的能量期望值的时间依赖性以及相对于自旋汉密尔顿人跨越量子相变的时间段的扭结密度的缩放。旋转的能量开始从量子相变附近的完整系统基态的能量中生长。相对于时间段,扭结密度是幂律的衰减。这些结果证实了Kibble-Zurek机制发生。与量子蒙特卡洛模拟相比,我们讨论了扭结密度衰减的指数。还简要提到了与实验研究的比较。

We study the Kibble-Zurek mechanism in the transverse Ising chain coupled to a dissipative boson bath, making use of a new numerical method with the infinite time evolving block decimation combined with the discrete-time path integral. We first show the ground-state phase diagram and confirm that a quantum phase transition takes place in the presence of the system-bath coupling. Then we present the time dependence of the energy expectation value of the spin Hamiltonian and the scaling of the kink density with respect to the time period over which the spin Hamiltonian crosses a quantum phase transition. The energy of spins starts to grow from the energy at the ground state of the full system near a quantum phase transition. The kink density decays as a power law with respect to the time period. These results confirm that the Kibble-Zurek mechanism happens. We discuss the exponent for the decay of the kink density in comparison with a theoretical result with the quantum Monte-Carlo simulation. A comparison to an experimental study is also briefly mentioned.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源