论文标题
函数类的宽度由空间中的普通模量的主要大模量定义
Widths of functional classes defined by majorants of generalized moduli of smoothness in the spaces ${\mathcal S}^p$
论文作者
论文摘要
确切的杰克逊型不等式是根据最佳近似值和空间中平滑度的普遍模量的平均值获得的。空间中的Kolmogorov,Bernstein,Linear和射击宽度的值是针对通过某些条件在平稳性的广义模量的平均值上定义的定期函数的类别的值。
Exact Jackson-type inequalities are obtained in terms of best approximations and averaged values of generalized moduli of smoothness in the spaces ${\mathcal S}^p$. The values of Kolmogorov, Bernstein, linear, and projective widths in the spaces ${\mathcal S}^p$ are found for classes of periodic functions defined by certain conditions on the averaged values of the generalized moduli of smoothness.