论文标题

迈向闭合模型的空间双相性:逻辑和结构性特征

Towards Spatial Bisimilarity for Closure Models: Logical and Coalgebraic Characterisations

论文作者

Ciancia, Vincenzo, Latella, Diego, Massink, Mieke, de Vink, Erik

论文摘要

模态逻辑的拓扑解释提供了描述性语言和证明系统,以理解拓扑空间的点。最近的工作已致力于对离散空间结构(例如有限图和数字图像)的空间逻辑进行模型检查,并在各种案例研究中的应用在内,包括医学图像分析。这些最近的发展需要从拓扑空间到封闭空间的概括步骤。在这项工作中,我们启动了与闭合空间语义相一致的双相性和最小化算法的研究。为此,我们采用了山地模型。我们提出了准二氧化物模型的双层菌度定义,该定义相对于具有可及性运算符的空间逻辑而言是足够的,并具有有限模型的免费和开源最小化工具。我们还通过提供众所周知的托托 - 生物形象的固定理论概念的概括,并以与邻里框架的煤层形成相同的精神来讨论非Quasi-discrete案例,但使用了协变量套装功能,而不是矛盾的一个。我们证明了它在无限模态逻辑方面的充分性。

The topological interpretation of modal logics provides descriptive languages and proof systems for reasoning about points of topological spaces. Recent work has been devoted to model checking of spatial logics on discrete spatial structures, such as finite graphs and digital images, with applications in various case studies including medical image analysis. These recent developments required a generalisation step, from topological spaces to closure spaces. In this work we initiate the study of bisimilarity and minimisation algorithms that are consistent with the closure spaces semantics. For this purpose we employ coalgebraic models. We present a coalgebraic definition of bisimilarity for quasi-discrete models, which is adequate with respect to a spatial logic with reachability operators, complemented by a free and open-source minimisation tool for finite models. We also discuss the non-quasi-discrete case, by providing a generalisation of the well-known set-theoretical notion of topo-bisimilarity, and a categorical definition, in the same spirit as the coalgebraic rendition of neighbourhood frames, but employing the covariant power set functor, instead of the contravariant one. We prove its adequacy with respect to infinitary modal logic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源