论文标题
深入序列学习预测主动脉压力
Aortic Pressure Forecasting with Deep Sequence Learning
论文作者
论文摘要
平均主动脉压力(MAP)是所有器官系统灌注的主要决定因素。预测图的能力将增强医生估计患者预后并帮助早期检测血液动力学不稳定性的能力。但是,预测图是具有挑战性的,因为血压(BP)时间序列嘈杂,可能是高度非平稳的。这项研究的目的是使用前五分钟的25 Hz时间序列数据提前五分钟预测平均主动脉压力。我们提供了针对BP预测的不同深度学习模型的基准研究。我们研究了接受高风险经皮干预的患者,研究了左心室居住的经隔离微轴装置。 Impella提供血液动力学支持,从而有助于天然心脏功能恢复。它还配备了压力传感器,可捕获原点的高频图测量值,而不是外围。我们的数据集和临床应用在BP预测领域中是新颖的。我们对时间序列进行了全面的研究,随着增加,减少和固定趋势的增加。实验表明,具有Legendre存储器单元的复发性神经网络可实现最佳性能,总体预测误差为1.8 mmHg。
Mean aortic pressure (MAP) is a major determinant of perfusion in all organs systems. The ability to forecast MAP would enhance the ability of physicians to estimate prognosis of the patient and assist in early detection of hemodynamic instability. However, forecasting MAP is challenging because the blood pressure (BP) time series is noisy and can be highly non-stationary. The aim of this study was to forecast the mean aortic pressure five minutes in advance, using the 25 Hz time series data of previous five minutes as input. We provide a benchmark study of different deep learning models for BP forecasting. We investigate a left ventricular dwelling transvalvular micro-axial device, the Impella, in patients undergoing high-risk percutaneous intervention. The Impella provides hemodynamic support, thus aiding in native heart function recovery. It is also equipped with pressure sensors to capture high frequency MAP measurements at origin, instead of peripherally. Our dataset and the clinical application is novel in the BP forecasting field. We performed a comprehensive study on time series with increasing, decreasing, and stationary trends. The experiments show that recurrent neural networks with Legendre Memory Unit achieve the best performance with an overall forecasting error of 1.8 mmHg.