论文标题
使用生成潜在搜索,用于WBC分类的目标无关域的适应
Target-Independent Domain Adaptation for WBC Classification using Generative Latent Search
论文作者
论文摘要
自动化白细胞(WBC)和相关细胞亚型的摄像头显微镜图像的分类自动化,因为它有助于艰苦的审查和诊断过程。使用深卷积神经网络开发的几种最先进的方法(SOTA)方法遇到了域移位问题 - 在与训练(来源)不同的环境中获得的数据(目标)测试时,在这些数据(目标)上进行了测试时,严重的性能降解。目标数据的变化可能是由诸如摄像机/显微镜类型,镜头,照明条件等差异等因素引起的,可以使用无监督的域适应(UDA)技术来解决此问题,尽管标准算法可以预见到足够数量的未经标记的目标数据存在,而这些算法并不总是与医疗图像相处。在本文中,我们提出了一种不需要目标数据的UDA方法。从目标数据中给出了测试图像,我们从使用作为分类器中的代理的源数据中获得了其“最近的克隆”。鉴于可以从源分布中对无限数量的数据点进行采样,我们证明了这种克隆的存在。我们提出了一种方法,其中使用基于变异推理的潜在可变量生成模型同时采样并通过潜在空间中的优化过程从源分布中找到“最近的粘液”。我们证明了所提出的方法对在多种设置下使用不同成像方式捕获的数据集上的几种SOTA UDA方法的疗效。
Automating the classification of camera-obtained microscopic images of White Blood Cells (WBCs) and related cell subtypes has assumed importance since it aids the laborious manual process of review and diagnosis. Several State-Of-The-Art (SOTA) methods developed using Deep Convolutional Neural Networks suffer from the problem of domain shift - severe performance degradation when they are tested on data (target) obtained in a setting different from that of the training (source). The change in the target data might be caused by factors such as differences in camera/microscope types, lenses, lighting-conditions etc. This problem can potentially be solved using Unsupervised Domain Adaptation (UDA) techniques albeit standard algorithms presuppose the existence of a sufficient amount of unlabelled target data which is not always the case with medical images. In this paper, we propose a method for UDA that is devoid of the need for target data. Given a test image from the target data, we obtain its 'closest-clone' from the source data that is used as a proxy in the classifier. We prove the existence of such a clone given that infinite number of data points can be sampled from the source distribution. We propose a method in which a latent-variable generative model based on variational inference is used to simultaneously sample and find the 'closest-clone' from the source distribution through an optimization procedure in the latent space. We demonstrate the efficacy of the proposed method over several SOTA UDA methods for WBC classification on datasets captured using different imaging modalities under multiple settings.