论文标题
纽约后混合动力 - 用于旋转的紧凑型二进制波形的有效一体方案
A hybrid post-Newtonian -- effective-one-body scheme for spin-precessing compact-binary waveforms
论文作者
论文摘要
我们介绍了\ texttt {teobresumsp}:一种有效,准确的混合方案,用于从旋转的紧凑型二进制文件中生成引力波形。进攻波形是通过已建立的Euler技术生成的,从而从进攻框架到惯性框架旋转了非不必要的\ texttt {teobresums}波形。我们通过求解扩展到第二个牛顿后秩序的牛顿后进动力来获得欧拉角。 \ texttt {teobresumsp}的当前版本通过Inspiral阶段产生前进的波形,直到合并的开始。 We compare \texttt{TEOBResumSP} to current state-of-the-art precessing approximants \texttt{NRSur7dq4}, \texttt{SEOBNRv4PHM}, and \texttt{IMRPhenomPv3HM} for 200 cases of precessing compact binary inspirals with orbital inclinations up to 90 degrees, mass ratios up to四,有效的进动参数$χ_p$最高0.75。我们进一步提供了与\ texttt {seobnrv4phm}的扩展比较,涉及1030个更多灵感,具有$χ_p\ le 1 $,质量比最高为10。我们发现\%的91 \%\%\%\%\% \ texttt {teobresumsp} - \ texttt {seobnrv4phm}匹配,\ textttt {teobresumsp} - \ texttttt {imrphenompv3hm}匹配的77 \%大于$ 0.965 $。大多数分歧都以较大的质量比和$χ_p\ gtrsim 0.6 $发生。我们将\ emph {non}的$(2,1)$模式的不匹配视为分歧的主要原因之一。我们还引入了一个新的参数,$χ_ {\ perp,\ text {max}} $,以测量进动的强度,并暗示上述近似值之间的不匹配显示了对$χ_ {\ perp,\ perp,\ text {max}}} $的指数依赖性。我们的结果表明,\ texttt {teobresumsp}即将成为一种可在通用旋转紧凑型二进制文件的参数估计中使用的可靠进攻。
We introduce \texttt{TEOBResumSP}: an efficient, accurate hybrid scheme for generating gravitational waveforms from spin-precessing compact binaries. The precessing waveforms are generated via the established technique of Euler rotating the non-precessing \texttt{TEOBResumS} waveforms from a precessing frame to an inertial frame. We obtain the Euler angles by solving the post-Newtonian precession equations expanded to second post-Newtonian order. Current version of \texttt{TEOBResumSP} produces precessing waveforms through the inspiral phase up to the onset of the merger. We compare \texttt{TEOBResumSP} to current state-of-the-art precessing approximants \texttt{NRSur7dq4}, \texttt{SEOBNRv4PHM}, and \texttt{IMRPhenomPv3HM} for 200 cases of precessing compact binary inspirals with orbital inclinations up to 90 degrees, mass ratios up to four, and the effective precession parameter $χ_p$ up to 0.75. We further provide an extended comparison with \texttt{SEOBNRv4PHM} involving 1030 more inspirals with $χ_p\le 1$ and mass ratios up to 10. We find that 91\% of the \texttt{TEOBResumSP}-\texttt{NRSur7dq4} matches, 85\% of the \texttt{TEOBResumSP}-\texttt{SEOBNRv4PHM} matches, and 77\% of the \texttt{TEOBResumSP}-\texttt{IMRPhenomPv3HM} matches are greater than $0.965$. Most disagreements occur for large mass ratios and $χ_p \gtrsim 0.6$. We identify the mismatch of the \emph{non}-precessing $(2,1)$ mode as one of the leading causes of disagreements. We also introduce a new parameter, $χ_{\perp,\text{max}}$, to measure the strength of precession and hint that the mismatch between the above approximants shows an exponential dependence on $χ_{\perp,\text{max}}$ though this requires further study. Our results indicate that \texttt{TEOBResumSP} is on its way to becoming a robust precessing approximant to be employed in the parameter estimation of generic-spin compact binaries.