论文标题

高高:高速粒度热量表的高富度模拟

Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed

论文作者

Buhmann, Erik, Diefenbacher, Sascha, Eren, Engin, Gaede, Frank, Kasieczka, Gregor, Korol, Anatolii, Krüger, Katja

论文摘要

物理过程的准确模拟对于现代粒子物理的成功至关重要。但是,模拟粒子淋浴与量热计探测器的开发和相互作用是一个耗时的过程,并驱动了LHC和未来煤层的大型实验的计算需求。最近,基于深层神经网络的生成机器学习模型已显示出有望通过几个数量级加速此任务的希望。我们研究了新的体系结构的使用 - 有限的信息瓶颈自动编码器 - 在拟议的国际大型探测器的硅丁香量热量表的中央区域建模电磁阵雨。与新的第二个后处理网络相结合,与全GEANT4模拟的高颗粒性热量计(27K模拟通道)相比,该方法对差分分布进行了准确的模拟,包括首次最小离子化粒子峰的形状。通过与已建立的体系结构进行比较来验证结果。我们的结果进一步加强了使用生成网络进行快速模拟的情况,并证明可以高精度地描述与物理相关的差分分布。

Accurate simulation of physical processes is crucial for the success of modern particle physics. However, simulating the development and interaction of particle showers with calorimeter detectors is a time consuming process and drives the computing needs of large experiments at the LHC and future colliders. Recently, generative machine learning models based on deep neural networks have shown promise in speeding up this task by several orders of magnitude. We investigate the use of a new architecture -- the Bounded Information Bottleneck Autoencoder -- for modelling electromagnetic showers in the central region of the Silicon-Tungsten calorimeter of the proposed International Large Detector. Combined with a novel second post-processing network, this approach achieves an accurate simulation of differential distributions including for the first time the shape of the minimum-ionizing-particle peak compared to a full GEANT4 simulation for a high-granularity calorimeter with 27k simulated channels. The results are validated by comparing to established architectures. Our results further strengthen the case of using generative networks for fast simulation and demonstrate that physically relevant differential distributions can be described with high accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源