论文标题
2类的伴随代数
The adjoint algebra for 2-categories
论文作者
论文摘要
对于2类别$ \ bc $中的任何0细胞$ b $,我们介绍了伴随代数$ \ adjb $的概念。这是$ \ bc $中心的代数。我们证明,如果$ \ ca $是有限的张量类别,则该概念应用于$ \ ca $ -module类别的2类,与Shimizu引入的概念相吻合[Fintite Tensor类别中(CO)端的结构的进一步结果},应用。分类器。结构。 (2019)。 https://doi.org/10.1007/s10485-019-09577-7]。由于这种一般方法,我们在张量类别的伴随代数上获得了新的结果。
For any 0-cell $B$ in a 2-category $\Bc$ we introduce the notion of adjoint algebra $\adj_B$. This is an algebra in the center of $\Bc$. We prove that, if $\ca$ is a finite tensor category, this notion applied to the 2-category of $\ca$-module categories, coincides with the one introduced by Shimizu [Further results on the structure of (Co)ends in fintite tensor categories}, Appl. Categor. Struct. (2019). https://doi.org/10.1007/s10485-019-09577-7]. As a consequence of this general approach, we obtain new results on the adjoint algebra for tensor categories.