论文标题

最大似然估计量的多元正常近似的Wasserstein距离误差界限

Wasserstein distance error bounds for the multivariate normal approximation of the maximum likelihood estimator

论文作者

Anastasiou, Andreas, Gaunt, Robert E.

论文摘要

我们获得了多参数MLE和多元正态分布之间的分布之间的显式$ P $ - WASSERSTEIN距离误差。我们的一般界限是针对高维,独立和相同分布的随机向量的。我们的一般界限是最佳$ \ Mathcal {o}(n^{ - 1/2})$ order。 Explicit numerical constants are given when $p\in(1,2]$, and in the case $p>2$ the bounds are explicit up to a constant factor that only depends on $p$. We apply our general bounds to derive Wasserstein distance error bounds for the multivariate normal approximation of the MLE in several settings; these being single-parameter exponential families, the normal distribution under canonical parametrisation, and the在非经典参数化下,多变量正态分布。

We obtain explicit $p$-Wasserstein distance error bounds between the distribution of the multi-parameter MLE and the multivariate normal distribution. Our general bounds are given for possibly high-dimensional, independent and identically distributed random vectors. Our general bounds are of the optimal $\mathcal{O}(n^{-1/2})$ order. Explicit numerical constants are given when $p\in(1,2]$, and in the case $p>2$ the bounds are explicit up to a constant factor that only depends on $p$. We apply our general bounds to derive Wasserstein distance error bounds for the multivariate normal approximation of the MLE in several settings; these being single-parameter exponential families, the normal distribution under canonical parametrisation, and the multivariate normal distribution under non-canonical parametrisation. In addition, we provide upper bounds with respect to the bounded Wasserstein distance when the MLE is implicitly defined.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源