论文标题

基于参考的草图图像着色,使用增强自我参考和密集的语义通信

Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence

论文作者

Lee, Junsoo, Kim, Eungyeup, Lee, Yunsung, Kim, Dongjun, Chang, Jaehyuk, Choo, Jaegul

论文摘要

本文给定了已经着色的参考图像,应处理草图图像的自动着色任务。在漫画,动画和其他内容创建应用程序中,对草图图像进行着色,但它遭受了素描图像的信息稀缺性。为了解决这个问题,参考图像可以以可靠和用户驱动的方式渲染着色过程。但是,很难为具有足够数量的语义上有意义的图像对以及反映给定参考的彩色图像的地面真相做准备(例如,给定蓝色汽车的草图着色)。为了应对这一挑战,我们建议将相同的图像用几何扭曲作为虚拟参考,这使得可以为彩色输出图像确保地面真相。此外,它自然提供了密集的语义对应关系的基础真理,我们在内部注意机制中使用的是从参考到草图输入的色彩传递。我们通过定量以及针对现有方法的定性评估来证明我们方法在各种类型的草图图像着色中的有效性。

This paper tackles the automatic colorization task of a sketch image given an already-colored reference image. Colorizing a sketch image is in high demand in comics, animation, and other content creation applications, but it suffers from information scarcity of a sketch image. To address this, a reference image can render the colorization process in a reliable and user-driven manner. However, it is difficult to prepare for a training data set that has a sufficient amount of semantically meaningful pairs of images as well as the ground truth for a colored image reflecting a given reference (e.g., coloring a sketch of an originally blue car given a reference green car). To tackle this challenge, we propose to utilize the identical image with geometric distortion as a virtual reference, which makes it possible to secure the ground truth for a colored output image. Furthermore, it naturally provides the ground truth for dense semantic correspondence, which we utilize in our internal attention mechanism for color transfer from reference to sketch input. We demonstrate the effectiveness of our approach in various types of sketch image colorization via quantitative as well as qualitative evaluation against existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源