论文标题
在混合空间梯子的费米 - 史塔特 - 哈伯德模型中的拓扑阶段
Topological phases in the Fermi-Hofstadter-Hubbard model on hybrid-space ladders
论文作者
论文摘要
在最近的超电原子实验中,已经实现了二维(2D)Chern绝缘子和一维拓扑泵。没有相互作用,当重新解释某些变量时,可以通过同一哈密顿量来描述这两个系统。在本文中,我们使用密度 - 矩阵的恢复量归一化算法研究了两个模型的关系。为此,我们在混合空间表示中表达了费米子霍夫史塔特模型,并定义了一个相互作用的家族,该家族将1D哈伯德电荷泵连接到2D Hubbard Chern绝缘子。我们在粒子密度$ρ= 2/3 $上研究了三波段模型,其中1D电荷泵的拓扑量化从Chern Number $ C = 2 $ c = 2 $ c = 2 $ c = -1 $随着相互作用强度的提高而变化。我们发现,在改变窄宽缸上的相互作用项时,$ c = -1 $相位是可靠的。但是,此阶段并未扩展到2D Hofstadter-Hubbard模型的限制,该模型保留在$ C = 2 $相位中。我们讨论了我们可以数值访问的最大圆柱体的两个拓扑阶段的存在。我们注意到强烈相互作用的1D和2D模型之间的铁磁基态的出现。对于这种铁磁状态,可以理解带有频段结构参数的$ c = -1 $相位。我们可以在实验中类似地实现我们测量霍尔电导率的方法:我们计算出对弱线性电势的当前响应,该反应是绝热的。霍尔电导率将大型系统尺寸的整数定量值收敛,与系统的Chern号相对应。
In recent experiments with ultracold atoms, both two-dimensional (2d) Chern insulators and one-dimensional (1d) topological charge pumps have been realized. Without interactions, both systems can be described by the same Hamiltonian, when some variables are being reinterpreted. In this paper, we study the relation of both models when Hubbard interactions are added, using the density-matrix renormalization-group algorithm. To this end, we express the fermionic Hofstadter model in a hybrid-space representation, and define a family of interactions, which connects 1d Hubbard charge pumps to 2d Hubbard Chern insulators. We study a three-band model at particle density $ρ=2/3$, where the topological quantization of the 1d charge pump changes from Chern number $C=2$ to $C=-1$ as the interaction strength increases. We find that the $C=-1$ phase is robust when varying the interaction terms on narrow-width cylinders. However, this phase does not extend to the limit of the 2d Hofstadter-Hubbard model, which remains in the $C=2$ phase. We discuss the existence of both topological phases for the largest cylinder circumferences that we can access numerically. We note the appearance of a ferromagnetic ground state between the strongly interacting 1d and 2d models. For this ferromagnetic state, one can understand the $C=-1$ phase from a bandstructure argument. Our method for measuring the Hall conductivity could similarly be realized in experiments: We compute the current response to a weak, linear potential, which is applied adiabatically. The Hall conductivity converges to integer-quantized values for large system sizes, corresponding to the system's Chern number.