论文标题
电流计算的差分几何基础
Differential Geometric Foundations for Power Flow Computations
论文作者
论文摘要
本文的目的是系统,全面地启动基础,以使用计算差异几何形状的概念作为电流计算和研究的工具。在这一点上,我们将讨论重点放在静态情况上,功率流程由电压空间定义的二次函数给出,并具有电源空间的值。两个空间都有真正的欧几里得坐标。中心问题是对电源流量空间边界的差分几何分析(SSB,也以简化的方式,称为鞍节节点分叉集,SNB,在电压空间中。我们提出了计算SSB和正常衍生物的切线向量,切线平面和正态的不同方法。使用后者,我们计算正常和主曲线。追踪曲线上曲线上点的正交投影或功率空间上的正交投影所需的所有这些都需要在最接近曲线上给定点的点上的SSB上,从而获得了其与SSB的距离的估计值。作为另一个例子,这些概念如何有用,我们提出了一种新的高精度延续方法,用于靠近电源流量的SSB和SSB上的功率流量映射从电压到电源空间的局部反转,假设功率流的jacobean Zero零空间的尺寸为kernel,则是一个。为了倒置,我们使用上述正交跟踪方法提出了两种不同几何的分裂技术。
This paper aims to systematically and comprehensively initiate a foundation for using concepts from computational differential geometry as instruments for power flow computing and research. At this point we focus our discussion on the static case, with power flow equations given by quadratic functions defined on voltage space with values in power space; both spaces have real Euclidean coordinates. The central issue is a differential geometric analysis of the power flow solution space boundary (SSB, also in a simplifying way, called saddle node bifurcation set, SNB) both in voltage and in power space. We present different methods for computing tangent vectors, tangent planes and normals of the SSB and the normals' derivatives. Using the latter we compute normal and principal curvatures. All this is needed for tracing the orthogonal projection of points on curves in voltage or power space onto the SSB on points closest to the given points on the curve, thus obtaining estimates for their distance to the SSB. As another example how these concepts can be useful, we present a new high precision continuation method for power flow solutions close to and on the SSB called local inversion of the power flow map from voltage to power space, assuming the dimension of power flow's Jacobean zero space, called KERNEL, is one. For inversion, we present two different geometry-based splitting techniques with one of them using the aforementioned orthogonal tracing method.