论文标题
一维开放式费米尼系统的拓扑表征
Topological characterization of one-dimensional open fermionic systems
论文作者
论文摘要
提出了一种表征对称性保护拓扑阶段在一维开放式费米子系统中的拓扑度量。它建立在混合状态的几何阶段的运动学方法上,并促进拓扑阶段从零温度到非零温度的情况的扩展。与先前的发现相反,拓扑特性可能无法在某个临界温度上生存,我们发现,从这里建议的度量的意义上讲,开放系统的拓扑特性可以在任何有限温度下持续存在,并且只能在无限温度的数学限制下消失。我们的结果用拓扑问题的两个范式模型进行了说明。非零温度下的大量拓扑表现为强大的混合边缘状态种群,通过两个功绩来检查。
A topological measure characterizing symmetry-protected topological phases in one-dimensional open fermionic systems is proposed. It is built upon the kinematic approach to the geometric phase of mixed states and facilitates the extension of the notion of topological phases from zero-temperature to nonzero-temperature cases. In contrast to a previous finding that topological properties may not survive above a certain critical temperature, we find that topological properties of open systems, in the sense of the measure suggested here, can persist at any finite temperature and disappear only in the mathematical limit of infinite temperature. Our result is illustrated with two paradigmatic models of topological matter. The bulk topology at nonzero temperatures manifested as robust mixed edge state populations is examined via two figures of merit.