论文标题

一个人可以通过由其一组人确定的度量空间来识别两个Unital JB $^*$ - 代数吗?

Can one identify two unital JB$^*$-algebras by the metric spaces determined by their sets of unitaries?

论文作者

Cueto-Avellaneda, María, Peralta, Antonio M.

论文摘要

让$ m $和$ n $为两个Unital JB $^*$ - 代数,让$ \ Mathcal {u}(m)$和$ \ Mathcal {u}(n)$分别用$ M $和$ n $表示所有一级的集合。我们证明以下陈述是等效的: $(a)$ $ m $,$ n $是(复杂)BANACH空间的同构同构; $(b)$ $ m $,$ n $是同构的同构,作为真正的Banach空间; $(c)$存在溢流等轴测$δ:\ Mathcal {u}(m)\ to \ Mathcal {u}(n)(n)。$ 我们实际上建立了一个更一般的陈述,断言在某些额外的额外条件下,对于每个冲销等轴测$δ:\ Mathcal {u}(m)\ to \ nathcal {u}(n)$,我们可以找到一个与N $相关的N $ comcy $Δ$ fumentive realinearsememetry $ c $ ex $ e} $ e}如果我们假设$ m $和$ n $是jbw $^*$ - 代数,则每个溢流等轴测$δ:\ mathcal {u}(m)\ to \ to \ nathcal {u}(u}(n)$ aff(unique)向$ m $ $ n $ n $ n $ n $ n $ n $ n $ n $ n $。这是hatori-moln {Á} r定理的扩展,以jb $^*$ - 代数的设置。

Let $M$ and $N$ be two unital JB$^*$-algebras and let $\mathcal{U} (M)$ and $\mathcal{U} (N)$ denote the sets of all unitaries in $M$ and $N$, respectively. We prove that the following statements are equivalent: $(a)$ $M$ and $N$ are isometrically isomorphic as (complex) Banach spaces; $(b)$ $M$ and $N$ are isometrically isomorphic as real Banach spaces; $(c)$ There exists a surjective isometry $Δ: \mathcal{U}(M)\to \mathcal{U}(N).$ We actually establish a more general statement asserting that, under some mild extra conditions, for each surjective isometry $Δ:\mathcal{U} (M) \to \mathcal{U} (N)$ we can find a surjective real linear isometry $Ψ:M\to N$ which coincides with $Δ$ on the subset $e^{i M_{sa}}$. If we assume that $M$ and $N$ are JBW$^*$-algebras, then every surjective isometry $Δ:\mathcal{U} (M) \to \mathcal{U} (N)$ admits a (unique) extension to a surjective real linear isometry from $M$ onto $N$. This is an extension of the Hatori--Moln{á}r theorem to the setting of JB$^*$-algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源