论文标题

使用布尔矩阵的逻辑测试调解效应

Testing Mediation Effects Using Logic of Boolean Matrices

论文作者

Shi, Chengchun, Li, Lexin

论文摘要

调解分析已成为科学研究中越来越重要的工具。高维中介分析中的一个核心问题是推断单个介体的重要性。主要的挑战是通过调解员的所有组合都采取的大量可能的途径。大多数现有的中介推理解决方案要么明确施加了鉴于暴露的有条件独立的,要么忽略了调解人之间的任何潜在路径。在本文中,我们提出了一种新型的假设检验程序,以评估个体调解效应,同时考虑到介体之间的潜在相互作用。因此,我们的建议填补了关键的空白,并大大扩展了现有调解测试的范围。我们的关键思想是使用布尔矩阵的逻辑构建测试统计量,这使我们能够在零假设下建立适当的限制分布。我们进一步采用筛选,数据拆分和非相关估计来减少偏差并增加测试的功能。我们显示我们的测试可以渐近地控制大小和错误的发现率,并且测试的功率接近1,同时允许介体数量与样本量相差无穷大。我们通过模拟和对阿尔茨海默氏病的神经成像研究证明了我们方法的功效。

Mediation analysis is becoming an increasingly important tool in scientific studies. A central question in high-dimensional mediation analysis is to infer the significance of individual mediators. The main challenge is the sheer number of possible paths that go through all combinations of mediators. Most existing mediation inference solutions either explicitly impose that the mediators are conditionally independent given the exposure, or ignore any potential directed paths among the mediators. In this article, we propose a novel hypothesis testing procedure to evaluate individual mediation effects, while taking into account potential interactions among the mediators. Our proposal thus fills a crucial gap, and greatly extends the scope of existing mediation tests. Our key idea is to construct the test statistic using the logic of Boolean matrices, which enables us to establish the proper limiting distribution under the null hypothesis. We further employ screening, data splitting, and decorrelated estimation to reduce the bias and increase the power of the test. We show our test can control both the size and false discovery rate asymptotically, and the power of the test approaches one, meanwhile allowing the number of mediators to diverge to infinity with the sample size. We demonstrate the efficacy of our method through both simulations and a neuroimaging study of Alzheimer's disease.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源