论文标题

提高了有任意需求的全有或无所不在的多商品流量的吞吐量

Improved Throughput for All-or-Nothing Multicommodity Flows with Arbitrary Demands

论文作者

Chaturvedi, Anya, Chekuri, Chandra, Liu, Mengxue, Richa, Andréa W., Rost, Mattias, Schmid, Stefan, Weber, Jamison

论文摘要

吞吐量是通信网络中的主要性能目标。本文在任意有向图中考虑了基本的最大吞吐量路由问题 - 全有或全无的多物品流(ANF)问题 - 在实际相关但具有挑战性的环境中,需求可能比边缘容量大得多。因此,除了将请求分配给每个路由商品的有效流程外,还需要一种录取控制机制,以防止路由商品时的网络过载。我们做出了一些贡献。在理论方面,我们获得了此NP-硬化问题的实质性改进的双标准近似算法。我们提出了两种非平凡的线性编程放松,并通过随机舍入将其分数溶液转换为整数解决方案。一个是一种指数尺寸的公式(使用分离甲骨文在多项式时间内解决),它考虑了“填充”视图并允许更灵活的方法,而另一个是紧凑的(多项式)边缘式配方,可以通过标准LP溶液易于求解。我们获得了多项式时间随机算法,该算法在加权吞吐量上产生任意良好的近似值,同时仅违反边缘容量约束仅通过一个小的乘法因子。我们还使用悲观估计器的方法来描述通过降低的确定性舍入算法。我们通过概念证明的经验评估来补充理论结果。

Throughput is a main performance objective in communication networks. This paper considers a fundamental maximum throughput routing problem -- the all-or-nothing multicommodity flow (ANF) problem -- in arbitrary directed graphs and in the practically relevant but challenging setting where demands can be (much) larger than the edge capacities. Hence, in addition to assigning requests to valid flows for each routed commodity, an admission control mechanism is required which prevents overloading the network when routing commodities. We make several contributions. On the theoretical side we obtain substantially improved bi-criteria approximation algorithms for this NP-hard problem. We present two non-trivial linear programming relaxations and show how to convert their fractional solutions into integer solutions via randomized rounding. One is an exponential-size formulation (solvable in polynomial time using a separation oracle) that considers a "packing" view and allows a more flexible approach, while the other is a compact (polynomial-size) edge-flow formulation that allows for easy solving via standard LP solvers. We obtain a polynomial-time randomized algorithm that yields an arbitrarily good approximation on the weighted throughput, while violating the edge capacity constraints by only a small multiplicative factor. We also describe a deterministic rounding algorithm by derandomization, using the method of pessimistic estimators. We complement our theoretical results with a proof of concept empirical evaluation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源