论文标题

如何克服P-Q理论的局限性:几何代数力量理论拯救

How to overcome the limitations of p-q Theory: Geometric Algebra Power Theory to the rescue

论文作者

Montoya, Francisco G., Alcayde, Alfredo, Arrabal-Campos, Francisco M., Baños, Raúl

论文摘要

本文研究了基于几何代数的力量理论(GAPOT)的最新进展,以及该工具如何提供新的见解来解决时域中最广泛的理论之一,即瞬时反应力理论(IRP)及其进一步增强的缺陷。 GAPOT可以应用于单相和多相系统,以在任何扭曲的电压源供应和负载条件下获得最佳电流分解。微电网或智能电网可能就是这种情况。此外,有可能根据瞬时或平均数量定义不同的策略,具体取决于电压供应条件是否是正弦和对称的。几个例子说明了Gapot如何克服IRP理论的局限性。

This paper investigates the recent advances in Geometric Algebra-based power theory (GAPoT) and how this tool provides new insights to solve the flaws of one of the most widespread theory in the time domain, the Instantaneous Reactive Power theory (IRP) and its further enhancements. GAPoT can be applied to single-phase and multi-phase systems to obtain an optimal current decomposition under any distorted voltage source supply and load condition. This could be the case in microgrids or smart grids. Moreover, it is possible to define different strategies based on instantaneous or averaged quantities depending on whether the voltage supply conditions are sinusoidal and symmetrical or not. Several examples illustrate how GAPoT is able to overcome the limitations of IRP theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源