论文标题

关于有限领域的阿贝利亚品种的自我产生的泰特班级

Tate classes on self-products of Abelian varieties over finite fields

论文作者

Zarhin, Yuri G.

论文摘要

我们处理有限字段上的$ g $二维Abelian品种$ x $。我们证明,存在一个通用常数(正整数)$ n = n(g)$,仅取决于享受以下属性的$ g $。如果$ x $的某些自我产品带有一个异国情调的泰特班,那么$ x $的自我产品$ x^{2n} $也带有异国情调的泰特班级。这给了Kiran Kedlaya的问题一个积极的答案。

We deal with $g$-dimensional abelian varieties $X$ over finite fields. We prove that there is an universal constant (positive integer) $N=N(g)$ that depends only on $g$ that enjoys the following properties. If a certain self-product of $X$ carries an exotic Tate class then the self-product $X^{2N}$of $X$ also carries an exotic Tate class. This gives a positive answer to a question of Kiran Kedlaya.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源