论文标题
山谷和旋转两极分化的破碎对称状态,在门控MOS中相互作用的电子$ _2 $量子点
Valley and spin polarized broken symmetry states of interacting electrons in gated MoS$_2$ quantum dots
论文作者
论文摘要
了解强烈相互作用的电子可以设计材料,纳米结构和设备。建立这种理解取决于通过将电子限制在2D晶体的原子较薄的层中,并以减少的筛选来调整和控制电子电子相互作用的能力。强烈相互作用在六角形晶格上的相互作用与两个非较高的山谷,拓扑矩和类似Ising的自旋轨道相互作用的相互作用导致了与山谷相对应的物质的各个阶段,并产生了旋转极化的损坏对称性状态。在这项工作中,我们描述了一个高度可调的电子系统的横向相互作用系统,该系统局部局限于金属门的单层过渡金属二进制金属元素$ _2 $。我们预测山谷的存在和自旋极化破碎的对称态,可通过使用精确的对角线化技术来调节势力,最多可用于$ n = 6 $电子。我们发现基态由两个阶段之一形成,即自旋和山谷偏振或山谷未极化,但自旋间隔抗铁磁性,它们的竞争是电子壳间距的函数。这一发现可以追溯到Ising样旋转轨道耦合和弱Intervalley交换相互作用的综合效果。这些结果为山谷系统中相互作用驱动的对称效应提供了解释,并突出了电子电子相互作用在设计valleytronic设备中的重要作用。
Understanding strongly interacting electrons enables the design of materials, nanostructures and devices. Developing this understanding relies on the ability to tune and control electron-electron interactions by, e.g., confining electrons to atomically thin layers of 2D crystals with reduced screening. The interplay of strong interactions on a hexagonal lattice with two nonequivalent valleys, topological moments, and the Ising-like spin-orbit interaction gives rise to a variety of phases of matter corresponding to valley and spin polarized broken symmetry states. In this work we describe a highly tunable strongly interacting system of electrons laterally confined to monolayer transition metal dichalcogenide MoS$_2$ by metalic gates. We predict the existence of valley and spin polarized broken symmetry states tunable by the parabolic confining potential using exact diagonalization techniques for up to $N=6$ electrons. We find that the ground state is formed by one of two phases, either both spin and valley polarized or valley unpolarised but spin intervalley antiferromagnetic, which compete as a function of electronic shell spacing. This finding can be traced back to the combined effect of Ising-like spin-orbit coupling and weak intervalley exchange interaction. These results provide an explanation for interaction-driven symmetry-breaking effects in valley systems and highlight the important role of electron-electron interactions for designing valleytronic devices.