论文标题

高分辨率面部年龄编辑

High Resolution Face Age Editing

论文作者

Yao, Xu, Puy, Gilles, Newson, Alasdair, Gousseau, Yann, Hellier, Pierre

论文摘要

面部年龄编辑已成为电影后制作的至关重要的任务,并且在通用摄影中也变得很受欢迎。最近,对抗性训练为图像操纵带来了一些最令人印象深刻的结果,包括面部老化/衰老任务。尽管取得了很大进展,但当前的方法通常会呈现视觉伪像,只能处理低分辨率的图像。为了以更广泛的使用所需的高质量和鲁棒性来实现衰老/衰老,需要解决这些问题。这是当前工作的目标。我们为面部年龄编辑提供了一个编码器架构。我们网络的核心思想是创建包含面部身份的潜在空间,又是与个人年龄相对应的特征调制层。然后,我们将这两个元素结合在一起,以产生具有所需目标年龄的人的输出图像。我们的架构在其他方法方面大大简化了,并允许在单个统一模型中对高分辨率图像进行连续的年龄编辑。

Face age editing has become a crucial task in film post-production, and is also becoming popular for general purpose photography. Recently, adversarial training has produced some of the most visually impressive results for image manipulation, including the face aging/de-aging task. In spite of considerable progress, current methods often present visual artifacts and can only deal with low-resolution images. In order to achieve aging/de-aging with the high quality and robustness necessary for wider use, these problems need to be addressed. This is the goal of the present work. We present an encoder-decoder architecture for face age editing. The core idea of our network is to create both a latent space containing the face identity, and a feature modulation layer corresponding to the age of the individual. We then combine these two elements to produce an output image of the person with a desired target age. Our architecture is greatly simplified with respect to other approaches, and allows for continuous age editing on high resolution images in a single unified model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源