论文标题
有效的量子电路,以精确的状态制备光滑,可微分的功能
Efficient Quantum Circuits for Accurate State Preparation of Smooth, Differentiable Functions
论文作者
论文摘要
有效的量子计算依赖于充分利用量子机的指数信息能力。设计用于实际量子机上执行的量子算法的大障碍是,通常,将任意量子状态构造至高精度非常困难。相反,许多量子算法都依赖于以简单状态初始化机器的初始化,并通过有效的(即大多数多项式深度)量子算法来发展状态。在这项工作中,我们表明存在量子状态的家庭,可以通过线性大小和深度的电路来准备高精度。我们专注于带有有界导数的实用值,平滑,可区分的函数,在感兴趣的领域上,以常用的概率分布为例。我们进一步开发了一种算法,该算法仅需要线性经典计算时间来生成精确的线性深度电路以准备这些状态,并将其应用于包括高斯和lognormal分布在内的众所周知且泛滥的功能。我们的过程基于称为矩阵乘积状态(MPS)的量子状态表示工具。通过有效且可伸缩地编码明确的振幅函数,可以直接生成高忠诚度,线性深度电路可以直接生成。这些结果使得可以执行许多量子算法,除初始化外,这些算法是深度有效的。
Effective quantum computation relies upon making good use of the exponential information capacity of a quantum machine. A large barrier to designing quantum algorithms for execution on real quantum machines is that, in general, it is intractably difficult to construct an arbitrary quantum state to high precision. Many quantum algorithms rely instead upon initializing the machine in a simple state, and evolving the state through an efficient (i.e. at most polynomial-depth) quantum algorithm. In this work, we show that there exist families of quantum states that can be prepared to high precision with circuits of linear size and depth. We focus on real-valued, smooth, differentiable functions with bounded derivatives on a domain of interest, exemplified by commonly used probability distributions. We further develop an algorithm that requires only linear classical computation time to generate accurate linear-depth circuits to prepare these states, and apply this to well-known and heavily-utilized functions including Gaussian and lognormal distributions. Our procedure rests upon the quantum state representation tool known as the matrix product state (MPS). By efficiently and scalably encoding an explicit amplitude function into an MPS, a high fidelity, linear-depth circuit can directly be generated. These results enable the execution of many quantum algorithms that, aside from initialization, are otherwise depth-efficient.