论文标题
Monopoles和Landau-Ginzburg型号II:浮子同源性
Monopoles and Landau-Ginzburg Models II: Floer Homology
论文作者
论文摘要
这是本系列的第二篇论文。在Meng-Taubes的设置之后,我们为任何一对$(y,ω)$定义了单极浮子同源性,其中$ y $是带有圆环边界的紧凑型3个manifold,$ω$是合适的封闭的2型封闭式2型,可将其视为装饰。该结构符合(3+1) - 血管学量子场理论,并概括了Kronheimer-Mrowka在封闭的3个模型中的工作。根据Meng-Taubes和Turaev的定理,该浮子同源性的欧拉特征恢复了3个Manifold的Milnor-Turaev扭转。
This is the second paper in this series. Following the setup of Meng-Taubes, we define the monopole Floer homology for any pair $(Y,ω)$, where $Y$ is a compact oriented 3-manifold with toroidal boundary and $ω$ is a suitable closed 2-form viewed as a decoration. This construction fits into a (3+1)-topological quantum field theory and generalizes the work of Kronheimer-Mrowka for closed oriented 3-manifolds. By a theorem of Meng-Taubes and Turaev, the Euler characteristic of this Floer homology recovers the Milnor-Turaev torsion invariant of the 3-manifold.