论文标题

Allsteps:课程驱动的垫脚石技能学习

ALLSTEPS: Curriculum-driven Learning of Stepping Stone Skills

论文作者

Xie, Zhaoming, Ling, Hung Yu, Kim, Nam Hee, van de Panne, Michiel

论文摘要

人类非常擅长在脚步限制的环境中行走,包括脚步声位置受到完全限制的垫脚石场景。寻找垫脚石运动的好解决方案是动画和机器人技术的长期挑战。我们使用加强学习提供了充分学习的解决方案。我们证明了课程对有效学习的重要性,并评估了与非课程基线相比,评估了四个可能的课程选择。为模拟人物,逼真的两足机器人模拟和怪物特征提供了结果,在每种情况下都会产生强大的,合理的动作,以挑战垫脚石序列和地形。

Humans are highly adept at walking in environments with foot placement constraints, including stepping-stone scenarios where the footstep locations are fully constrained. Finding good solutions to stepping-stone locomotion is a longstanding and fundamental challenge for animation and robotics. We present fully learned solutions to this difficult problem using reinforcement learning. We demonstrate the importance of a curriculum for efficient learning and evaluate four possible curriculum choices compared to a non-curriculum baseline. Results are presented for a simulated human character, a realistic bipedal robot simulation and a monster character, in each case producing robust, plausible motions for challenging stepping stone sequences and terrains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源