论文标题

Bop-Elites,用于质量多样性搜索的贝叶斯优化算法

BOP-Elites, a Bayesian Optimisation algorithm for Quality-Diversity search

论文作者

Kent, Paul, Branke, Juergen

论文摘要

质量多样性(QD)算法(例如MAP-ELITE)是一类优化技术,试图从目标函数中找到一组高性能点,同时在一个或多个可解释的用户选择的特征功能上执行这些点的行为多样性。 在本文中,我们提出了使用贝叶斯优化的技术对精英(BOP-ELITE)算法的贝叶斯优化,以通过高斯工艺明确地对质量和多样性进行模拟。通过将特征空间的用户定义区域视为“利基”,我们的任务就是在每个利基市场中找到最佳解决方案。我们提出一种新颖的采集功能,以智能选择新的点,以确定每个利基市场中最佳解决方案的合奏问题,从而提供最高的预期改进。通过这种方式,每个功能评估都丰富了我们的建模,并为整个问题提供了洞察力,自然平衡了对搜索空间的探索和开发。所得算法在识别特征空间中属于利基市场的搜索空间的各个部分以及在每个利基市场中找到最佳解决方案非常有效。与简单的基准方法相比,它的样品效率也明显高得多。通过量化围绕我们的预测的不确定性并通过替代模型量化搜索空间的额外照明,BOP-ELITE的进展远远超过了现有的QD算法。

Quality Diversity (QD) algorithms such as MAP-Elites are a class of optimisation techniques that attempt to find a set of high-performing points from an objective function while enforcing behavioural diversity of the points over one or more interpretable, user chosen, feature functions. In this paper we propose the Bayesian Optimisation of Elites (BOP-Elites) algorithm that uses techniques from Bayesian Optimisation to explicitly model both quality and diversity with Gaussian Processes. By considering user defined regions of the feature space as 'niches' our task is to find the optimal solution in each niche. We propose a novel acquisition function to intelligently choose new points that provide the highest expected improvement to the ensemble problem of identifying the best solution in every niche. In this way each function evaluation enriches our modelling and provides insight to the whole problem, naturally balancing exploration and exploitation of the search space. The resulting algorithm is very effective in identifying the parts of the search space that belong to a niche in feature space, and finding the optimal solution in each niche. It is also significantly more sample efficient than simpler benchmark approaches. BOP-Elites goes further than existing QD algorithms by quantifying the uncertainty around our predictions and offering additional illumination of the search space through surrogate models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源