论文标题

可解释的矩阵 - 随机森林分类合奏的全球和局部解释性的可视化

Explainable Matrix -- Visualization for Global and Local Interpretability of Random Forest Classification Ensembles

论文作者

Neto, Mário Popolin, Paulovich, Fernando V.

论文摘要

在过去的几十年中,鉴于它们在各个领域的潜力和适用性,分类模型已被证明是必不可少的机器学习工具。在这些年中,尽管缺乏有关模型决定所传达的模型决定的信息,但大多数研究人员北部一直在改善定量指标。该范式最近发生了变化,表格和数字以外的策略可以帮助解释模型的决策。这一趋势的一部分,可视化技术已被广泛用于支持分类模型的可解释性,重点关注基于规则的模型。尽管取得了进步,但现有方法在视觉可伸缩性方面存在局限性,大型和复杂模型的可视化(例如随机森林(RF)技术产生的模型)仍然是一个挑战。在本文中,我们提出了可解释的矩阵(EXMATRIX),这是一种用于RF可解释性的新型可视化方法,可以处理大量规则的模型。它采用了一个简单而功能强大的类似矩阵的视觉隐喻,其中行是规则,列是特征,并且单元格是规则谓词,从而可以分析整个模型并进行审计分类结果。 Exmatrix的适用性通过不同的示例确认,显示了如何在实践中使用它来促进RF模型可解释性。

Over the past decades, classification models have proven to be essential machine learning tools given their potential and applicability in various domains. In these years, the north of the majority of the researchers had been to improve quantitative metrics, notwithstanding the lack of information about models' decisions such metrics convey. This paradigm has recently shifted, and strategies beyond tables and numbers to assist in interpreting models' decisions are increasing in importance. Part of this trend, visualization techniques have been extensively used to support classification models' interpretability, with a significant focus on rule-based models. Despite the advances, the existing approaches present limitations in terms of visual scalability, and the visualization of large and complex models, such as the ones produced by the Random Forest (RF) technique, remains a challenge. In this paper, we propose Explainable Matrix (ExMatrix), a novel visualization method for RF interpretability that can handle models with massive quantities of rules. It employs a simple yet powerful matrix-like visual metaphor, where rows are rules, columns are features, and cells are rules predicates, enabling the analysis of entire models and auditing classification results. ExMatrix applicability is confirmed via different examples, showing how it can be used in practice to promote RF models interpretability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源