论文标题
其他太阳系中的地球N体模拟:轨道阻尼在重现开普勒行星系统中的作用
Earths in Other Solar Systems N-body simulations: the Role of Orbital Damping in Reproducing the Kepler Planetary Systems
论文作者
论文摘要
开普勒检测到的超球星系的种群提供了完善我们对行星形成的理解的机会。阐明产生观察到的系外行星所需的条件将使我们对银河系中可居住的世界存在的位置做出明智的预测。在本文中,我们使用N体模拟检查了如何在组装的最后阶段确定行星系统的性质。虽然积聚是一个混乱的过程,但行星系统的整体特性的趋势提供了对恒星在积聚前固体质量的初始分布的记忆。我们还使用EPOS(EPOS)(系外行星人口观察模拟器)来解释检测偏见,并表明可以将不同的积分方案与开普勒系统的观察区分开来。我们表明,最内向的行星的时期,相邻行星的轨道周期和行星质量的比率取决于积聚开始时胚胎和行星的总质量和径向分布。通常,在积聚过程中需要通过行星或气体进行一些轨道阻尼以匹配整个系外行星的种群。令人惊讶的是,所有模拟的行星系统的大小都相似,表明“豆荚中的豌豆”模式与巨大的冲击场景和行星迁移方案都可以一致。在比开普勒观察到的大于距离内的材料对观察到的行星体系结构产生了深远的影响,从而对挥发物的形成和传递到可能的可居住世界。
The population of exoplanetary systems detected by Kepler provides opportunities to refine our understanding of planet formation. Unraveling the conditions needed to produce the observed exoplanets will sallow us to make informed predictions as to where habitable worlds exist within the galaxy. In this paper, we examine using N-body simulations how the properties of planetary systems are determined during the final stages of assembly. While accretion is a chaotic process, trends in the ensemble properties of planetary systems provide a memory of the initial distribution of solid mass around a star prior to accretion. We also use EPOS, the Exoplanet Population Observation Simulator, to account for detection biases and show that different accretion scenarios can be distinguished from observations of the Kepler systems. We show that the period of the innermost planet, the ratio of orbital periods of adjacent planets, and masses of the planets are determined by the total mass and radial distribution of embryos and planetesimals at the beginning of accretion. In general, some amount of orbital damping, either via planetesimals or gas, during accretion is needed to match the whole population of exoplanets. Surprisingly, all simulated planetary systems have planets that are similar in size, showing that the "peas in a pod" pattern can be consistent with both a giant impact scenario and a planet migration scenario. The inclusion of material at distances larger than what Kepler observes has a profound impact on the observed planetary architectures, and thus on the formation and delivery of volatiles to possible habitable worlds.