论文标题

基于文本的理想点

Text-Based Ideal Points

论文作者

Vafa, Keyon, Naidu, Suresh, Blei, David M.

论文摘要

理想观点模型分析了立法者的投票,以量化其政治立场或理想观点。但是投票不是表达政治立场的唯一方法。议员们还发表演讲,发行新闻报表和发布推文。在本文中,我们介绍了基于文本的理想点模型(TBIP),这是一种无监督的概率主题模型,该模型分析文本以量化作者的政治立场。我们用两种类型的政治文本数据演示了TBIP:美国参议院演讲和参议员推文。尽管该模型没有分析他们的投票或政治隶属关系,但TBIP将立法者逐一分开,学习可解释的政治主题,并侵犯接近基于经典投票的理想观点的理想观点。分析文本而不是投票的一个好处是,TBIP可以估计任何作者政治文本(包括无投票行为者)的人的理想观点。为此,我们用它来研究2020年民主党总统候选人的推文。仅使用其推文的文本,它沿着可解释的渐进到中等频谱来识别它们。

Ideal point models analyze lawmakers' votes to quantify their political positions, or ideal points. But votes are not the only way to express a political position. Lawmakers also give speeches, release press statements, and post tweets. In this paper, we introduce the text-based ideal point model (TBIP), an unsupervised probabilistic topic model that analyzes texts to quantify the political positions of its authors. We demonstrate the TBIP with two types of politicized text data: U.S. Senate speeches and senator tweets. Though the model does not analyze their votes or political affiliations, the TBIP separates lawmakers by party, learns interpretable politicized topics, and infers ideal points close to the classical vote-based ideal points. One benefit of analyzing texts, as opposed to votes, is that the TBIP can estimate ideal points of anyone who authors political texts, including non-voting actors. To this end, we use it to study tweets from the 2020 Democratic presidential candidates. Using only the texts of their tweets, it identifies them along an interpretable progressive-to-moderate spectrum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源