论文标题

在穆拉利 - 拉克斯曼 - 芝族巡回赛和元素驱动的chua振荡器中的滑动分叉

Sliding Bifurcations in the Memristive Murali-Lakshmanan-Chua Circuit and the Memristive Driven Chua Oscillator

论文作者

Ahamed, A. Ishaq, Lakshmanan, M.

论文摘要

在本文中,我们报告了穆拉利 - 拉克斯曼 - chua电路所接受的滑动分叉的发生\ cite {iCha13}和磁盘驱动的chua振荡器\ citep {citep {icha11}。这两个电路都有由作者在2011年设计为非线性元素的磁通量的主动备忘录。该回忆录的三个段分段线性特征赋予电路两个不连续性边界,将它们的相位空间分为三个子区域。为了正确选择参数,这些电路在两个不连续性中的每一个中的平滑度都等于一个,从而使它们以\ textit {filippov}系统的形式行为。当每个子区域的周期性轨道与不连续性边界相互作用时,就会出现滑动分叉的特征,这是Filippov系统的特征。在合并适当的零时间不连续映射(ZDM)校正后进行数值模拟。发现这些与我们在这里适当报告的实验观察结果非常吻合。

In this paper we report the occurrence of sliding bifurcations admitted by the memristive Murali-Lakshmanan-Chua circuit \cite{icha13} and the memristive driven Chua oscillator \citep{icha11}. Both of these circuits have a flux-controlled active memristor designed by the authors in 2011, as their non-linear element. The three segment piecewise-linear characteristic of this memristor bestows on the circuits two discontinuity boundaries, dividing their phase spaces into three sub-regions. For proper choice of parameters, these circuits take on a degree of smoothness equal to one at each of their two discontinuities, thereby causing them to behave as \textit{Filippov} systems. Sliding bifurcations, which are characteristic of Filippov systems, arise when the periodic orbits in each of the sub-regions, interact with the discontinuity boundaries, giving rise to many interesting dynamical phenomena. The numerical simulations are carried out after incorporating proper zero time discontinuity mapping (ZDM) corrections. These are found to agree well with the experimental observations which we report here appropriately.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源