论文标题
在拜占庭式攻击下,脉冲耦合振荡器网络的全局同步
Global Synchronization of Pulse-Coupled Oscillator Networks Under Byzantine Attacks
论文作者
论文摘要
由于它们在传感器网络和无线通信中的应用增加,脉冲耦合振荡器(PCOS)的同步最近引起了重大关注。鉴于无线传感器网络的分布式和无人看管的性质,必须增强PCO同步对恶意攻击的弹性。但是,在全体耦合拓扑的假设或限制的初始相分布的假设下,基于攻击的基于攻击脉冲同步的大多数结果是获得的。在本文中,我们提出了一种新的基于脉冲的同步机制,以提高适用于非全部网络的PCO同步的攻击弹性。在提出的同步机制下,我们证明,在存在多个拜占庭式攻击者的情况下,可以保证合法振荡器的完美同步,这些攻击者可以任意发射攻击脉冲而没有任何约束,除非实际的比特率约束,否则攻击者的脉冲数量是有限的。即使所有合法振荡器的初始阶段在整个振荡期间任意分布,该新机制也可以保证同步,这与大多数现有的攻击抗性同步方法(包括Lamport和Melliar-Smith [1]的开创性纸张)之间的差异很大,这些纸张需要先验(几乎)(几乎)(几乎)同步的合法仪表板中的合法官员。给出数值模拟结果以确认理论结果。
Synchronization of pulse-coupled oscillators (PCOs) has gained significant attention recently due to their increased applications in sensor networks and wireless communications. Given the distributed and unattended nature of wireless sensor networks, it is imperative to enhance the resilience of PCO synchronization against malicious attacks. However, most existing results on attack-resilient pulse-based synchronization are obtained under assumptions of all-to-all coupling topologies or restricted initial phase distributions. In this paper, we propose a new pulse-based synchronization mechanism to improve the attack resilience of PCO synchronization that is applicable to non-all-to-all networks. Under the proposed synchronization mechanism, we prove that perfect synchronization of legitimate oscillators can be guaranteed in the presence of multiple Byzantine attackers who can emit attack pulses arbitrarily without any constraint except that practical bit rate constraint renders the number of pulses from an attacker to be finite. The new mechanism can guarantee synchronization even when the initial phases of all legitimate oscillators are arbitrarily distributed in the entire oscillation period, which is in distinct difference from most existing attack-resilient synchronization approaches (including the seminal paper from Lamport and Melliar-Smith [1]) that require a priori (almost) synchronization among legitimate oscillators. Numerical simulation results are given to confirm the theoretical results.