论文标题

涵盖图表中的意大利统治

Covering Italian domination in graphs

论文作者

Khodkar, Abdollah, Mojdeh, Doost Ali, Samadi, Babak, Yero, Ismael G.

论文摘要

对于图$ g =(v(g),e(g))$,意大利的主导函数(id函数)为$ g $是一个函数$ f:v(g) \在n(v)$中,带有$ f(u)= 2 $,或者有两个顶点$ x,y \ in n(v)$,带有$ f(x)= f(y)= 1 $。函数$ f:v(g)\ rightArrow \ {0,1,2 \} $是$ g $的覆盖意大利主导函数(CID函数),如果$ f $是ID函数,而$ \ {v \ in v(g)\ inid f(g)\米中f(v)\ neq0 \ neq0 \} $ is vertex us vertex cove set。覆盖意大利统治编号(CID编号​​)$γ_{CI}(G)$是$ G $的所有CID功能所取的最小权重。 在本文中,我们研究了图中的CID数。我们表明,即使仅限于一些众所周知的图族,计算此参数的问题也是NP-HARD,并在此参数上找到一些界限。我们表征了其CID数字的图形系列,其上限是其顶点覆盖号的两倍,以及所有无爪数的CID编号​​达到其订单的下限的所有无爪图。我们还提供了一些具有小CID数字的图形家庭的特征。

For a graph $G=(V(G),E(G))$, an Italian dominating function (ID function) of $G$ is a function $f:V(G)\rightarrow \{0,1,2\}$ such that for each vertex $v\in V(G)$ with $f(v)=0$, $f(N(v))\geq2$, that is, either there is a vertex $u \in N(v)$ with $f (u) = 2$ or there are two vertices $x,y\in N(v)$ with $f(x)=f(y)=1$. A function $f:V(G)\rightarrow \{0,1,2\}$ is a covering Italian dominating function (CID function) of $G$ if $f$ is an ID function and $\{v\in V(G)\mid f(v)\neq0\}$ is a vertex cover set. The covering Italian domination number (CID number) $γ_{cI}(G)$ is the minimum weight taken over all CID functions of $G$. In this paper, we study the CID number in graphs. We show that the problem of computing this parameter is NP-hard even when restricted to some well-known families of graphs, and find some bounds on this parameter. We characterize the family of graphs for which their CID numbers attain the upper bound twice their vertex cover number as well as all claw-free graphs whose CID numbers attain the lower bound half of their orders. We also give the characterizations of some families of graphs with small or large CID numbers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源