论文标题

具有理性产品的单数模量三元

Triples of singular moduli with rational product

论文作者

Fowler, Guy

论文摘要

我们表明,所有三重三元$(x_1,x_2,x_3)singular moduli满足$ x_1 x_1 x_2 x_3 \ in \ mathbb {q}^{\ times} $是“琐事”。也就是说,要么$ x_1,x_2,x_3 \ in \ mathbb {q} $; \ Mathbb {q} $和其余$ x_j,x_k $的$ x_i \ in \ mathbb {q} $不同,度$ 2 $,而在$ \ mathbb {q} $上进行了共轭;或$ x_1,x_2,x_3 $是成对的,程度为$ 3 $,并且在$ \ mathbb {q} $上结合。该定理是最好的,并且是Bilu,Luca和Pizarro-Madariaga在二维中的自然三维类似物。它建立了André-subvarieties家族的André-猜想$v_α\ subset \ mathbb {c}^3 $由公式定义的$ x_1 x_1 x_2 x_2 x_3 =α\ in \ mathbb {q} $。

We show that all triples $(x_1,x_2,x_3)$ of singular moduli satisfying $x_1 x_2 x_3 \in \mathbb{Q}^{\times}$ are "trivial". That is, either $x_1, x_2, x_3 \in \mathbb{Q}$; some $x_i \in \mathbb{Q}$ and the remaining $x_j, x_k$ are distinct, of degree $2$, and conjugate over $\mathbb{Q}$; or $x_1, x_2, x_3$ are pairwise distinct, of degree $3$, and conjugate over $\mathbb{Q}$. This theorem is best possible and is the natural three dimensional analogue of a result of Bilu, Luca, and Pizarro-Madariaga in two dimensions. It establishes an explicit version of the André--Oort conjecture for the family of subvarieties $V_α \subset \mathbb{C}^3$ defined by an equation $x_1 x_2 x_3 = α\in \mathbb{Q}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源