论文标题

追求和揭示数据摘要的指南

Guidelines For Pursuing and Revealing Data Abstractions

论文作者

Bigelow, Alex, Williams, Katy, Isaacs, Katherine E.

论文摘要

除可视化研究社区以外,许多数据抽象类型(例如网络或集合关系)仍然不熟悉数据工作者。我们对人们如何直接或间接地描述他们的数据进行了调查和一系列访谈。我们将后者称为潜在数据摘要。我们进行了扎根的理论分析,即(1)解释了潜在数据抽象的存在程度,(2)揭示了对这种抽象的追求对数据工作者的深远影响,(3)描述了数据工作者为什么以及何时抗拒此类探索,(4)(4)建议如何利用机会,并通过跨跨跨跨越的视觉研究来利用机会和减轻风险,并跨越可视化的研究和阶段的研究范围。阶段和派别范围均可遵循视觉范围。然后,我们使用在接地理论分析中发现的主题和代码来制定可视化项目中数据抽象的指南。为了继续讨论,我们将数据集与视觉接口一起打开,以进行进一步探索。

Many data abstraction types, such as networks or set relationships, remain unfamiliar to data workers beyond the visualization research community. We conduct a survey and series of interviews about how people describe their data, either directly or indirectly. We refer to the latter as latent data abstractions. We conduct a Grounded Theory analysis that (1) interprets the extent to which latent data abstractions exist, (2) reveals the far-reaching effects that the interventionist pursuit of such abstractions can have on data workers, (3) describes why and when data workers may resist such explorations, and (4) suggests how to take advantage of opportunities and mitigate risks through transparency about visualization research perspectives and agendas. We then use the themes and codes discovered in the Grounded Theory analysis to develop guidelines for data abstraction in visualization projects. To continue the discussion, we make our dataset open along with a visual interface for further exploration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源