论文标题
在恒定的karlovitz和雷诺数增加的湍流火焰速度和反应层增厚
Turbulent flame speed and reaction layer thickening in premixed jet flames at constant Karlovitz and increasing Reynolds numbers
论文作者
论文摘要
为了研究湍流$ l $的积分尺度相关的反应层结构的修改,对湍流速度和对反应层结构的修改进行了一系列直接的数值模拟(DNS),以研究湍流$ L $ l $的反应层结构的修改,而Karlovitz数量和Kolmogorov量表保持恒定。以增加雷诺的数量和最多$ re \ 22000 $模拟了四个湍流插槽火焰,该火焰根据散装速度,插槽宽度和反应物的属性定义。湍流的火焰速度$ s_t $在当地在选择的流式位置进行了本地评估,并且观察到,每种火焰和跨火焰的流向方向增加了雷诺数,以增加雷诺数,这与湍流积分的相应增加。特别是,湍流的火焰速度$ s_t $随着$ l $的积分尺度呈指数增长,达到约6层层状火焰厚度,而缩放缩放成为较大值$ l $的幂律。这些趋势不能完全归因于火焰表面的增加,因为随着整体规模的增加,湍流火焰速度与火焰区域的比例失去了相称性。特别是,发现湍流火焰速度与区域的比率达到了一个幂律缩放$ l^{0.2} $。这是由于反应层的总体扩展而引起的,以增加整体规模,这与反应速率的相应降低无关,从而导致总体燃烧率的净增强。该观察结果很重要,因为它表明,最大湍流尺度的大小的持续增加可能会导致火焰内部层的修改逐渐更强,即使最小的尺度(即karlovitz数字)保持恒定。
A series of Direct Numerical Simulations (DNS) of lean methane/air flames was conducted in order to investigate the enhancement of the turbulent flame speed and modifications to the reaction layer structure associated with the systematic increase of the integral scale of turbulence $l$ while the Karlovitz number and the Kolmogorov scale are kept constant. Four turbulent slot jet flames are simulated at increasing Reynolds number and up to $Re \approx 22000$, defined based on the bulk velocity, slot width, and the reactants' properties. The turbulent flame speed $S_T$ is evaluated locally at select streamwise locations and it is observed to increase both in the streamwise direction for each flame and across flames for increasing Reynolds number, in line with a corresponding increase of the turbulent integral scale. In particular, the turbulent flame speed $S_T$ increases exponentially with the integral scale for $l$ up to about 6 laminar flame thicknesses, while the scaling becomes a power-law for larger values of $l$. These trends cannot be ascribed completely to the increase in the flame surface, since the turbulent flame speed looses its proportionality to the flame area as the integral scale increases; in particular, it is found that the ratio of turbulent flame speed to area attains a power-law scaling $l^{0.2}$. This is caused by an overall broadening of the reaction layer for increasing integral scale, which is not associated with a corresponding decrease of the reaction rate, causing a net enhancement of the overall burning rate. This observation is significant since it suggests that a continuous increase in the size of the largest scales of turbulence might be responsible for progressively stronger modifications of the flame's inner layers even if the smallest scales, i.e., the Karlovitz number, are kept constant.