论文标题

基于联邦学习的无线网络的Lightwave电力传输

Lightwave Power Transfer for Federated Learning-based Wireless Networks

论文作者

Tran, Ha-Vu, Kaddoum, Georges, Elgala, Hany, Abou-Rjeily, Chadi, Kaushal, Hemani

论文摘要

联合学习(FL)最近被作为一种新技术,用于以分布式方式培训共享的机器学习模型,同时尊重数据隐私。但是,由于它们参与共享学习模型的构建,因此在无线网络中实施FL可能会大大降低能源受限的移动设备的寿命。为了解决这个问题,我们根据基于FL的无线网络中的Lightwave功率传输的应用以及一种资源分配方案来管理网络的功率效率,在物理层上提出了一种新颖的方法。因此,我们制定了相应的优化问题,然后提出了一种获得最佳解决方案的方法。数值结果表明,所提出的方案可以为移动设备提供足够的能量,以执行FL任务,而无需使用自己的电池。因此,提出的方法可以支持基于FL的无线网络,以克服移动设备中能源有限的问题。

Federated Learning (FL) has been recently presented as a new technique for training shared machine learning models in a distributed manner while respecting data privacy. However, implementing FL in wireless networks may significantly reduce the lifetime of energy-constrained mobile devices due to their involvement in the construction of the shared learning models. To handle this issue, we propose a novel approach at the physical layer based on the application of lightwave power transfer in the FL-based wireless network and a resource allocation scheme to manage the network's power efficiency. Hence, we formulate the corresponding optimization problem and then propose a method to obtain the optimal solution. Numerical results reveal that, the proposed scheme can provide sufficient energy to a mobile device for performing FL tasks without using any power from its own battery. Hence, the proposed approach can support the FL-based wireless network to overcome the issue of limited energy in mobile devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源