论文标题

使用卷积神经网络从GST/NIRIS的Stokes曲线中推断矢量磁场

Inferring Vector Magnetic Fields from Stokes Profiles of GST/NIRIS Using a Convolutional Neural Network

论文作者

Liu, Hao, Xu, Yan, Wang, Jiasheng, Jing, Ju, Liu, Chang, Wang, Jason T. L., Wang, Haimin

论文摘要

我们提出了一种基于卷积神经网络(CNN)和Milne-Eddington(ME)方法的新机器学习方法来倒置逆转。这项研究中使用的Stokes测量值是由大熊太阳能天文台的1.6 m Goode太阳能望远镜(GST)上的近红外成像光谱仪(NIRIS)进行的。通过学习基于物理的ME工具制备的训练数据中的潜在模式,提出的CNN方法能够从GST/NIRIS的Stokes曲线中推断向量磁场。实验结果表明,与广泛使用的我的方法相比,我们的CNN方法会产生更顺畅,更清洁的磁图。此外,CNN方法的速度比ME方法快4至6倍,并且能够在几乎实时产生矢量磁场,这对于太空天气预测至关重要。具体而言,CNN方法需要大约50秒的时间来处理包含GST/NIRIS的Stokes曲线的720 x 720像素的图像。最后,CNN扣除的结果与ME计算结果高度相关,并且与ME的结果更接近ME的结果,而Pearson Product-Moment相关系数(PPMCC)平均比其他机器学习算法(例如多重支持矢量回归and MultiLayer Perceptrons(MLP)的机器学习算法(MLP)平均接近1。特别是,根据我们的实验研究,CNN方法在PPMCC中平均比当前的最佳机器学习方法(MLP)平均高2.6%。因此,提出的基于深度学习的CNN工具可以将其视为GST/NIRIS获得的高分辨率极化观察结果的替代,有效的方法。

We propose a new machine learning approach to Stokes inversion based on a convolutional neural network (CNN) and the Milne-Eddington (ME) method. The Stokes measurements used in this study were taken by the Near InfraRed Imaging Spectropolarimeter (NIRIS) on the 1.6 m Goode Solar Telescope (GST) at the Big Bear Solar Observatory. By learning the latent patterns in the training data prepared by the physics-based ME tool, the proposed CNN method is able to infer vector magnetic fields from the Stokes profiles of GST/NIRIS. Experimental results show that our CNN method produces smoother and cleaner magnetic maps than the widely used ME method. Furthermore, the CNN method is 4~6 times faster than the ME method, and is able to produce vector magnetic fields in near real-time, which is essential to space weather forecasting. Specifically, it takes ~50 seconds for the CNN method to process an image of 720 x 720 pixels comprising Stokes profiles of GST/NIRIS. Finally, the CNN-inferred results are highly correlated to the ME-calculated results and are closer to the ME's results with the Pearson product-moment correlation coefficient (PPMCC) being closer to 1 on average than those from other machine learning algorithms such as multiple support vector regression and multilayer perceptrons (MLP). In particular, the CNN method outperforms the current best machine learning method (MLP) by 2.6% on average in PPMCC according to our experimental study. Thus, the proposed physics-assisted deep learning-based CNN tool can be considered as an alternative, efficient method for Stokes inversion for high resolution polarimetric observations obtained by GST/NIRIS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源