论文标题

超越CNN:在医学图像中利用进一步的固有对称性进行分割

Beyond CNNs: Exploiting Further Inherent Symmetries in Medical Images for Segmentation

论文作者

Pang, Shuchao, Du, Anan, Orgun, Mehmet A., Wang, Yan, Sheng, Quanzheng, Wang, Shoujin, Huang, Xiaoshui, Yu, Zhemei

论文摘要

自动肿瘤分割是用于计算机辅助诊断的医学图像分析的关键步骤。尽管基于卷积神经网络(CNN)的现有方法已经达到了最先进的表现,但医疗肿瘤分割中仍然存在许多挑战。这是因为常规CNN只能利用翻译不变性,而忽略了医学图像中存在的进一步固有的对称性,例如旋转和反射。为了减轻这一缺点,我们通过编码那些固有的对称性来学习更精确的表示形式,提出了一个新型的群体模棱两可的分割框架。首先,在每个方向上都设计了基于内核的模棱两可的操作,这可以有效地解决现有方法中学习对称性的差距。然后,为了保持分割网络在全球范围内,我们设计具有层对称约束的独特组层。通过利用进一步的对称性,新颖的分割CNN可以大大降低样品复杂性和过滤器的冗余(大约2/3),而在常规CNN上。更重要的是,基于我们的新框架,我们表明,新建的GER-UNET优于其常规CNN基于CNN的对应方和对现实世界临床数据的最新分割方法。具体而言,我们的分割框架的组层可以无缝集成到任何基于CNN的细分架构中。

Automatic tumor segmentation is a crucial step in medical image analysis for computer-aided diagnosis. Although the existing methods based on convolutional neural networks (CNNs) have achieved the state-of-the-art performance, many challenges still remain in medical tumor segmentation. This is because regular CNNs can only exploit translation invariance, ignoring further inherent symmetries existing in medical images such as rotations and reflections. To mitigate this shortcoming, we propose a novel group equivariant segmentation framework by encoding those inherent symmetries for learning more precise representations. First, kernel-based equivariant operations are devised on every orientation, which can effectively address the gaps of learning symmetries in existing approaches. Then, to keep segmentation networks globally equivariant, we design distinctive group layers with layerwise symmetry constraints. By exploiting further symmetries, novel segmentation CNNs can dramatically reduce the sample complexity and the redundancy of filters (by roughly 2/3) over regular CNNs. More importantly, based on our novel framework, we show that a newly built GER-UNet outperforms its regular CNN-based counterpart and the state-of-the-art segmentation methods on real-world clinical data. Specifically, the group layers of our segmentation framework can be seamlessly integrated into any popular CNN-based segmentation architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源