论文标题
通过层次折叠的跳过注意网络的点云完成
Point Cloud Completion by Skip-attention Network with Hierarchical Folding
论文作者
论文摘要
点云完成旨在推断出不完整的3D对象缺失区域的完整几何形状。以前的方法通常会根据从不完整输入提取的全局形状表示形式来预测完整的点云。但是,全球表示通常受到不完整点云本地区域的结构详细信息的信息丢失。为了解决这个问题,我们建议进行3D点云完成的跳过注意网络(SA-NET)。我们的主要贡献在于以下两倍。首先,我们提出了一种跳过注意机制,以有效利用丢失零件的推断期间不完整点云的局部结构细节。跳过注意机制从不完整的点云的本地区域有选择地传达几何信息,以在不同的分辨率下生成完整的几何信息,在不同的分辨率上,跳过注意以一种可解释的方式揭示了完成过程。其次,为了充分利用不同分辨率下的跳过注意机制编码的选定几何信息,我们提出了一种新型的结构性扩展解码器,并具有层次折叠,以使形状产生完整。层次折叠通过在相同分辨率下使用跳过注意的几何形状逐渐详细详细介绍局部区域,从而保留了上层产生的完整点云的结构。我们对Shapenet和Kitti数据集进行了全面的实验,这些实验表明,所提出的SA-NET优于最先进的点云完成方法。
Point cloud completion aims to infer the complete geometries for missing regions of 3D objects from incomplete ones. Previous methods usually predict the complete point cloud based on the global shape representation extracted from the incomplete input. However, the global representation often suffers from the information loss of structure details on local regions of incomplete point cloud. To address this problem, we propose Skip-Attention Network (SA-Net) for 3D point cloud completion. Our main contributions lie in the following two-folds. First, we propose a skip-attention mechanism to effectively exploit the local structure details of incomplete point clouds during the inference of missing parts. The skip-attention mechanism selectively conveys geometric information from the local regions of incomplete point clouds for the generation of complete ones at different resolutions, where the skip-attention reveals the completion process in an interpretable way. Second, in order to fully utilize the selected geometric information encoded by skip-attention mechanism at different resolutions, we propose a novel structure-preserving decoder with hierarchical folding for complete shape generation. The hierarchical folding preserves the structure of complete point cloud generated in upper layer by progressively detailing the local regions, using the skip-attentioned geometry at the same resolution. We conduct comprehensive experiments on ShapeNet and KITTI datasets, which demonstrate that the proposed SA-Net outperforms the state-of-the-art point cloud completion methods.