论文标题
与GPU加速的胚胎形成:重新评估陆地积聚的初始条件
Embryo formation with GPU acceleration: reevaluating the initial conditions for terrestrial accretion
论文作者
论文摘要
人们认为,太阳系的陆地行星已经从较小的胚胎和行星的海洋中吸收了数百万年。因为不可能知道原始太阳星云中固体和尺寸频率分布的表面密度曲线,因此在历史上很难区分各种提出的进化方案。几乎所有以前的陆地行星形成的模拟都假定,在原始气盘阶段,月亮向火星质量的胚胎形成。但是,由于需要大量物体,通过胚胎积聚模型来验证这一假设在计算上具有挑战性。在这里,我们通过从r〜100 km的行星上开始对胚胎生长的GPU加速,直接的N体型模拟来重新评估这个问题。我们发现,从给定的径向距离处的原始气相中出现的胚胎已经具有与现代太阳系中同一半高轴最大物体相似的质量。因此,地球和金星在火星地区的现代质量,火星质量的胚胎形式的占约50%,而在小行星带中,铜绿质量的物体普遍存在。与最近的其他工作一致,我们针对地面积聚模型的新初始条件在通过行星形成的巨大冲击阶段进化时,可产生显着改善的太阳系类似物。但是,我们仍然得出结论,需要另外的动态机制,例如巨型行星迁移,以防止地球质量的火星类似物的生长。
The solar system's terrestrial planets are thought to have accreted over millions of years out of a sea of smaller embryos and planetesimals. Because it is impossible to know the surface density profile for solids and size frequency distribution in the primordial solar nebula, distinguishing between the various proposed evolutionary schemes has been historically difficult. Nearly all previous simulations of terrestrial planet formation assume that Moon to Mars massed embryos formed throughout the inner solar system during the primordial gas-disk phase. However, validating this assumption through models of embryo accretion is computationally challenging because of the large number of bodies required. Here, we reevaluate this problem with GPU-accelerated, direct N-body simulations of embryo growth starting from r~100 km planetesimals. We find that embryos emerging from the primordial gas phase at a given radial distance already have masses similar to the largest objects at the same semi-major axis in the modern solar system. Thus, Earth and Venus attain ~50% of their modern mass, Mars-massed embryos form in the Mars region, and Ceres-massed objects are prevalent throughout asteroid belt. Consistent with other recent work, our new initial conditions for terrestrial accretion models produce markedly improved solar system analogs when evolved through the giant impact phase of planet formation. However, we still conclude that an additional dynamical mechanism such as giant planet migration is required to prevent Earth-massed Mars analogs from growing.