论文标题

PLAN2VEC:潜在计划的无监督代表性学习

Plan2Vec: Unsupervised Representation Learning by Latent Plans

论文作者

Yang, Ge, Zhang, Amy, Morcos, Ari S., Pineau, Joelle, Abbeel, Pieter, Calandra, Roberto

论文摘要

在本文中,我们介绍了Plan2Vec,这是一种受强化学习启发的无监督表示学习方法。 PLAN2VEC使用近邻居距离在图像数据集上构建加权图,然后通过将路径综合派在计划的路径上蒸馏到全局嵌入到全局嵌入中。当应用于控制时,Plan2Vec提供了一种学习目标条件的价值估计值,这些估计值在较长的范围内是计算和样本效率的。我们证明了Plan2VEC对一个模拟和两个具有挑战性的现实图像数据集的有效性。实验结果表明,PLAN2VEC成功地摊销了计划成本,从而实现了在记忆和计算复杂性中线性的反应性计划,而不是在整个状态空间中详尽。

In this paper we introduce plan2vec, an unsupervised representation learning approach that is inspired by reinforcement learning. Plan2vec constructs a weighted graph on an image dataset using near-neighbor distances, and then extrapolates this local metric to a global embedding by distilling path-integral over planned path. When applied to control, plan2vec offers a way to learn goal-conditioned value estimates that are accurate over long horizons that is both compute and sample efficient. We demonstrate the effectiveness of plan2vec on one simulated and two challenging real-world image datasets. Experimental results show that plan2vec successfully amortizes the planning cost, enabling reactive planning that is linear in memory and computation complexity rather than exhaustive over the entire state space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源