论文标题

AN-GCN:匿名图形卷积网络防御,以防止边缘扰动攻击

AN-GCN: An Anonymous Graph Convolutional Network Defense Against Edge-Perturbing Attack

论文作者

Liu, Ao, Li, Beibei, Li, Tao, Zhou, Pan, wang, Rui

论文摘要

最近的研究揭示了图形卷积网络(GCN)对边缘扰动攻击的脆弱性,例如恶意插入或删除图形边缘。但是,这种脆弱性的理论证明仍然是一个巨大的挑战,有效的防御计划仍然是空旷的问题。在本文中,我们首先概括了边缘扰动攻击的制定,并严格证明了GCN在节点分类任务中对此类攻击的脆弱性。此后,提出了一个名为AN-GCN的匿名图形卷积网络,以反对边缘扰动攻击。具体而言,我们提出了一个节点定位定理,以证明GCN在训练阶段如何定位节点。此外,我们设计了基于高斯噪声的节点位置发生器,并在检测生成的节点位置时设计了基于光谱图的鉴别器。此外,我们给出了上述生成器和歧视器的优化。 AN-GCN可以将节点分类而无需将其作为输入。已经证明,AN-GCN可以安全地免受节点分类任务中的边缘扰动攻击,因为AN-GCN在没有边缘信息的情况下对节点进行了分类,因此攻击者不再不再扰动边缘了。广泛的评估证明了一般边缘扰动攻击模型在操纵目标节点的分类结果中的有效性。更重要的是,未经Edge Reading许可,提出的AN-GCN可以在节点分类的准确性上实现82.7%,这表现优于最先进的GCN。

Recent studies have revealed the vulnerability of graph convolutional networks (GCNs) to edge-perturbing attacks, such as maliciously inserting or deleting graph edges. However, a theoretical proof of such vulnerability remains a big challenge, and effective defense schemes are still open issues. In this paper, we first generalize the formulation of edge-perturbing attacks and strictly prove the vulnerability of GCNs to such attacks in node classification tasks. Following this, an anonymous graph convolutional network, named AN-GCN, is proposed to counter against edge-perturbing attacks. Specifically, we present a node localization theorem to demonstrate how the GCN locates nodes during its training phase. In addition, we design a staggered Gaussian noise based node position generator, and devise a spectral graph convolution based discriminator in detecting the generated node positions. Further, we give the optimization of the above generator and discriminator. AN-GCN can classify nodes without taking their position as input. It is demonstrated that the AN-GCN is secure against edge-perturbing attacks in node classification tasks, as AN-GCN classifies nodes without the edge information and thus makes it impossible for attackers to perturb edges anymore. Extensive evaluations demonstrated the effectiveness of the general edge-perturbing attack model in manipulating the classification results of the target nodes. More importantly, the proposed AN-GCN can achieve 82.7% in node classification accuracy without the edge-reading permission, which outperforms the state-of-the-art GCN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源