论文标题

与图形卷积网络的捆绑包建议

Bundle Recommendation with Graph Convolutional Networks

论文作者

Chang, Jianxin, Gao, Chen, He, Xiangnan, Li, Yong, Jin, Depeng

论文摘要

Bundle建议旨在推荐一堆物品,以供用户整体消费。现有解决方案通过共享模型参数或以多任务方式学习将用户项目的交互建模整合到捆绑建议中,该方式无法明确地对项目和捆绑包之间的隶属关系进行建模,并且当用户选择捆绑包时无法探索决策。在这项工作中,我们提出了一个名为bgcn的图形神经网络模型(\ textIt {\ textbf {b} undle \ textbf {g} raph \ textbf {c} involutional \ textbf {n} n} etwork})用于束建议。 BGCN将用户项目交互,用户捆绑交互和捆绑项目隶属关系统一分为异质图。将项目节点作为桥梁,用户和束节点之间的图形卷积传播使学习的表示形式捕获了项目级别的语义。通过基于硬性采样器的培训,进一步区分了用户对类似束的细粒度偏好。两个现实世界数据集的经验结果证明了BGCN的强劲绩效增长,这表现优于最先进的基本线10.77 \%\%至23.18 \%。

Bundle recommendation aims to recommend a bundle of items for a user to consume as a whole. Existing solutions integrate user-item interaction modeling into bundle recommendation by sharing model parameters or learning in a multi-task manner, which cannot explicitly model the affiliation between items and bundles, and fail to explore the decision-making when a user chooses bundles. In this work, we propose a graph neural network model named BGCN (short for \textit{\textBF{B}undle \textBF{G}raph \textBF{C}onvolutional \textBF{N}etwork}) for bundle recommendation. BGCN unifies user-item interaction, user-bundle interaction and bundle-item affiliation into a heterogeneous graph. With item nodes as the bridge, graph convolutional propagation between user and bundle nodes makes the learned representations capture the item level semantics. Through training based on hard-negative sampler, the user's fine-grained preferences for similar bundles are further distinguished. Empirical results on two real-world datasets demonstrate the strong performance gains of BGCN, which outperforms the state-of-the-art baselines by 10.77\% to 23.18\%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源