论文标题

“合并”与预测模型的组合可以减少73%的COVID-19(电晕)测试数量

A combination of 'pooling' with a prediction model can reduce by 73% the number of COVID-19 (Corona-virus) tests

论文作者

Cohen, Tomer, Finkelman, Lior, Grimberg, Gal, Shenhar, Gadi, Strichman, Ofer, Strichman, Yonatan, Yeger, Stav

论文摘要

我们表明,将预测模型(基于神经网络)与一种新的测试合并方法(比原始的Dorfman方法更好,并且比双重功能更好),称为“网格”,我们可以将COVID-19测试的数量减少73%。

We show that combining a prediction model (based on neural networks), with a new method of test pooling (better than the original Dorfman method, and better than double-pooling) called 'Grid', we can reduce the number of Covid-19 tests by 73%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源