论文标题
在较高维
Asymptotic symmetries and subleading soft graviton theorem in higher dimensions
论文作者
论文摘要
我们研究了均匀的均匀度定理和重力的渐近对称性之间的关系,均匀尺寸$ d = 2+2m $高于四个。在重写了跨式软重力定理作为病房身份之后,我们认为这种身份的费用会产生diff $(s^{2m})$。为了表明,我们提出了公制场的某些组成部分之间的合适的换向关系。结果,所有差异$(s^{2m})$转换是引力散射的对称性。
We investigate the relation between the subleading soft graviton theorem and asymptotic symmetries in gravity in even dimensions $d=2+2m$ higher than four. After rewriting the subleading soft graviton theorem as a Ward identity, we argue that the charges of such identity generate Diff$(S^{2m})$. In order to show that, we propose suitable commutation relation among certain components of the metric fields. As a result, all Diff$(S^{2m})$ transformations are symmetries of gravitational scattering.