论文标题

汽车:使用轻量级AI和边缘计算的海上搜索和救援的多动力系统系统

AutoSOS: Towards Multi-UAV Systems Supporting Maritime Search and Rescue with Lightweight AI and Edge Computing

论文作者

Queralta, Jorge Peña, Raitoharju, Jenni, Gia, Tuan Nguyen, Passalis, Nikolaos, Westerlund, Tomi

论文摘要

救援船是海上安全与救援行动的主要演员。同时,空中无人机在这种情况下带来了重大优势。本文介绍了Autosos项目的研究方向,我们在开发自主的多机器人搜索和救援辅助平台的开发中,能够使用新颖的轻量级AI模型在嵌入式设备中进行传感器融合和对象检测。该平台旨在使用新型的自适应深度学习算法进行侦察任务,以对环境进行初步评估,这些算法有效地使用无人机和救援船上的可用传感器和计算资源。当无人机找到潜在的对象时,他们将以提高准确性将传感器数据发送到容器中,以实现调查结果。实际的救援和治疗行动是救援人员的责任。当无人机传输信息与船只之间的直接连接时,无人机将自主重新配置其空间分布以实现多跳通信。

Rescue vessels are the main actors in maritime safety and rescue operations. At the same time, aerial drones bring a significant advantage into this scenario. This paper presents the research directions of the AutoSOS project, where we work in the development of an autonomous multi-robot search and rescue assistance platform capable of sensor fusion and object detection in embedded devices using novel lightweight AI models. The platform is meant to perform reconnaissance missions for initial assessment of the environment using novel adaptive deep learning algorithms that efficiently use the available sensors and computational resources on drones and rescue vessel. When drones find potential objects, they will send their sensor data to the vessel to verity the findings with increased accuracy. The actual rescue and treatment operation are left as the responsibility of the rescue personnel. The drones will autonomously reconfigure their spatial distribution to enable multi-hop communication, when a direct connection between a drone transmitting information and the vessel is unavailable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源