论文标题

基于森林的回归地图集的本地化和方向特异性图集的生成胰腺分割

Regression Forest-Based Atlas Localization and Direction Specific Atlas Generation for Pancreas Segmentation

论文作者

Oda, Masahiro, Shimizu, Natsuki, Karasawa, Ken'ichi, Nimura, Yukitaka, Kitasaka, Takayuki, Misawa, Kazunari, Fujiwara, Michitaka, Rueckert, Daniel, Mori, Kensaku

论文摘要

本文提出了一种基于ATLA的胰腺分割方法,该方法是通过使用血管信息来通过回归森林和Atlas生成的ATLAS定位的CT体积的。以前基于概率地图集的胰腺分割方法无法处理胰腺中常见的空间变化。同样,形状变化不会由平均地图集表示。我们提出了一种完全自动化的胰腺分割方法,该方法处理上述两种变化。使用回归森林技术估算胰腺的位置和大小。本地化后,基于新图像相似性生成了患者特异性的概率地图集,该图像相似性反映了胰腺周围的血管位置和方向信息。我们使用ATLA的EM算法进行分割,然后进行图形切割。在使用147个CT体积的评估结果中,JACCARD指数和所提出方法的骰子重叠分别为62.1%和75.1%。尽管我们自动化了所有分割过程,但分割结果优于骰子重叠中其他最新方法。

This paper proposes a fully automated atlas-based pancreas segmentation method from CT volumes utilizing atlas localization by regression forest and atlas generation using blood vessel information. Previous probabilistic atlas-based pancreas segmentation methods cannot deal with spatial variations that are commonly found in the pancreas well. Also, shape variations are not represented by an averaged atlas. We propose a fully automated pancreas segmentation method that deals with two types of variations mentioned above. The position and size of the pancreas is estimated using a regression forest technique. After localization, a patient-specific probabilistic atlas is generated based on a new image similarity that reflects the blood vessel position and direction information around the pancreas. We segment it using the EM algorithm with the atlas as prior followed by the graph-cut. In evaluation results using 147 CT volumes, the Jaccard index and the Dice overlap of the proposed method were 62.1% and 75.1%, respectively. Although we automated all of the segmentation processes, segmentation results were superior to the other state-of-the-art methods in the Dice overlap.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源