论文标题
Lorentz估计了涉及Schrödinger术语的准线性椭圆双重障碍问题
Lorentz estimates for quasi-linear elliptic double obstacle problems involving a Schrödinger term
论文作者
论文摘要
我们本文中的目标是研究全球洛伦兹的估计,涉及Schrödinger术语的$ p $ -laplace双重障碍问题的较弱解决方案梯度:$-Δ_Pu + + + + + \ Mathbb {v} | u |^{p-2 {p-2)这个问题对数学,工程,物理和其他科学分支具有自身的兴趣。我们的方法在非线性Schrödinger类型方程的Calderón-Zygmund理论的研究之间建立了新的联系,而双重障碍问题的变异不平等。
Our goal in this article is to study the global Lorentz estimates for gradient of weak solutions to $p$-Laplace double obstacle problems involving the Schrödinger term: $-Δ_p u + \mathbb{V}|u|^{p-2}u$ with bound constraints $ψ_1 \le u \le ψ_2$ in non-smooth domains. This problem has its own interest in mathematics, engineering, physics and other branches of science. Our approach makes a novel connection between the study of Calderón-Zygmund theory for nonlinear Schrödinger type equations and variational inequalities for double obstacle problems.