论文标题
幼儿的高精度自动脑组织分类的新颖解决方案
Novel solutions toward high accuracy automatic brain tissue classification in young children
论文作者
论文摘要
在儿童早期大脑的小儿MR扫描中,主要组织类别和脑脊液的准确分类仍然是一个挑战。使用最新的分类方法(部分体积估计),较差且高度可变的灰质和白质对T1加权MR扫描的对比使体素自动分类为主要组织类别。脑组织和可能的组织伪像的不同强度进一步导致错误分类。为了提高自动检测主要组织类型的准确性和婴儿大脑在10天内的大脑中的脑脊液的准确性,我们提出了一种基于基于内核Fisher判别分析(KFDA)的新分类方法,以进行模式识别,以与客观结构相似性指数(SSSIM)相结合,以评估图像质量。所提出的方法对图像结构域进行最佳分配到具有不同平均强度值和相对均匀的组织强度的亚域。在基于KFDA的框架中,在3D(T1W,T2W,PDW)空间中利用了灰质,白质和脑脊液强度簇的复杂非线性结构,以找到准确的分类。基于计算机视觉假设,即人类视觉系统是一种最佳的结构信息提取器,SSIM在评估分类质量中发现了新的作用。使用SSIM指数与最先进的部分体积估计方法进行了比较,表明在低对比度亚域中,基于局部KFDA的算法的卓越性能以及对灰质,白质和大脑体积中的灰质和脑脊液模式的更准确检测。
Accurate automatic classification of major tissue classes and the cerebrospinal fluid in pediatric MR scans of early childhood brains remains a challenge. A poor and highly variable grey matter and white matter contrast on T1-weighted MR scans of developing brains complicates the automatic categorization of voxels into major tissue classes using state-of-the-art classification methods (Partial Volume Estimation). Varying intensities across brain tissues and possible tissue artifacts further contribute to misclassification. In order to improve the accuracy of automatic detection of major tissue types and the cerebrospinal fluid in infant's brains within the age range from 10 days to 4.5 years, we propose a new classification method based on Kernel Fisher Discriminant Analysis (KFDA) for pattern recognition, combined with an objective structural similarity index (SSIM) for perceptual image quality assessment. The proposed method performs an optimal partitioning of the image domain into subdomains having different average intensity values and relatively homogeneous tissue intensity. In the KFDA-based framework, a complex non-linear structure of grey matter, white matter and cerebrospinal fluid intensity clusters in a 3D (T1W, T2W, PDW)-space is exploited to find an accurate classification. Based on Computer Vision hypothesis that the Human Visual System is an optimal structural information extractor, the SSIM finds a new role in the evaluation of the quality of classification. A comparison with the state-of-the-art Partial Volume Estimation method using the SSIM index demonstrates superior performance of the local KFDA-based algorithm in low contrast subdomains and more accurate detection of grey matter, white matter, and cerebrospinal fluid patterns in the brain volume.