论文标题
深度学习框架中的分层预测编码模型
Hierarchical Predictive Coding Models in a Deep-Learning Framework
论文作者
论文摘要
贝叶斯预测编码是一种推定的神经形态方法,用于获取高级神经表示以说明感觉输入。尽管起源于神经科学社区,但机器学习社区也有一些努力来研究这些模型。本文回顾了一些更知名的模型。我们的综述分析了模块连接和信息传输模式,以寻求在模型中找到使用的一般原则。我们还调查了一些最新尝试将这些模型施放在深度学习框架内的尝试。贝叶斯预测性编码的一个定义特征是,它使用自上而下的重建机制来预测传入的感觉输入或其较低级别的表示。预测和实际输入之间的差异(称为预测错误)会引起未来的学习,从而提高并提高了学到的高级表示的预测准确性。预测性编码模型旨在描述在开发深度学习之前出现新皮层中的计算,并在模块之间使用了我们命名Rao-Ballard协议的模块之间的通信结构。该协议源自具有一些相当强大的统计假设的贝叶斯生成模型。 RB协议提供了一个标题,以评估声称实施预测编码的深度学习模型的忠诚度。
Bayesian predictive coding is a putative neuromorphic method for acquiring higher-level neural representations to account for sensory input. Although originating in the neuroscience community, there are also efforts in the machine learning community to study these models. This paper reviews some of the more well known models. Our review analyzes module connectivity and patterns of information transfer, seeking to find general principles used across the models. We also survey some recent attempts to cast these models within a deep learning framework. A defining feature of Bayesian predictive coding is that it uses top-down, reconstructive mechanisms to predict incoming sensory inputs or their lower-level representations. Discrepancies between the predicted and the actual inputs, known as prediction errors, then give rise to future learning that refines and improves the predictive accuracy of learned higher-level representations. Predictive coding models intended to describe computations in the neocortex emerged prior to the development of deep learning and used a communication structure between modules that we name the Rao-Ballard protocol. This protocol was derived from a Bayesian generative model with some rather strong statistical assumptions. The RB protocol provides a rubric to assess the fidelity of deep learning models that claim to implement predictive coding.