论文标题
子域的适应性与多种差异差异
Subdomain Adaptation with Manifolds Discrepancy Alignment
论文作者
论文摘要
减少域差异是转移学习问题的关键步骤。现有的作品着重于最小化全球域差异。但是,两个域可能由几个共享子域组成,并且在每个子域中彼此不同。在本文中,我们在转移中考虑了局部差异。具体而言,我们建议使用低维歧管来表示子域,并将跨域的每个歧管中的局部数据分布差异对齐。开发了一种歧管最大平均差异(M3D),以测量每个歧管中的局部分布差异。然后,我们提出了一个通用框架,称为带有歧管差异(TMDA)的传输,将发现数据歧管的发现与M3D的最小化。我们考虑线性映射和非线性映射,在子空间学习案例中实例化TMDA。我们还将在深度学习框架中实例化TMDA。广泛的实验研究表明,TMDA是用于各种转移学习任务的有前途的方法。
Reducing domain divergence is a key step in transfer learning problems. Existing works focus on the minimization of global domain divergence. However, two domains may consist of several shared subdomains, and differ from each other in each subdomain. In this paper, we take the local divergence of subdomains into account in transfer. Specifically, we propose to use low-dimensional manifold to represent subdomain, and align the local data distribution discrepancy in each manifold across domains. A Manifold Maximum Mean Discrepancy (M3D) is developed to measure the local distribution discrepancy in each manifold. We then propose a general framework, called Transfer with Manifolds Discrepancy Alignment (TMDA), to couple the discovery of data manifolds with the minimization of M3D. We instantiate TMDA in the subspace learning case considering both the linear and nonlinear mappings. We also instantiate TMDA in the deep learning framework. Extensive experimental studies demonstrate that TMDA is a promising method for various transfer learning tasks.