论文标题

快速映射到人口普查区块

Fast Mapping onto Census Blocks

论文作者

Kepner, Jeremy, Kipf, Andreas, Engwirda, Darren, Vembar, Navin, Jones, Michael, Milechin, Lauren, Gadepally, Vijay, Hill, Chris, Kraska, Tim, Arcand, William, Bestor, David, Bergeron, William, Byun, Chansup, Hubbell, Matthew, Houle, Michael, Kirby, Andrew, Klein, Anna, Mullen, Julie, Prout, Andrew, Reuther, Albert, Rosa, Antonio, Samsi, Sid, Yee, Charles, Michaleas, Peter

论文摘要

通过迅速整合动态位置数据和人口统计数据,可以增强诸如社会距离和接触追踪之类的大流行措施。在研究和部署环境中,预计数十亿个经度和纬度位置在计算上都具有挑战性。本文介绍了两种标记为“简单”和“快速”的方法。简单的方法可以用任何脚本语言(Matlab/Octave,Python,Julia,R)实现,并且可以轻松地集成并定制到各种研究目标。这种简单的方法使用了层次结构,稀疏边界框,多边形交叉数,矢量化和并行处理的新型组合,以在100台服务器上实现每秒100,000,000+的投影。简单的方法是紧凑的,不会增加数据存储要求,并且适用于任何国家或地区。快速方法利用了使用低级语言(C ++)进行线程,向量和内存优化,并在单个服务器上实现相似的性能。本文详细介绍了这些方法,目的是使更广泛的社区快速整合位置和人口统计数据。

Pandemic measures such as social distancing and contact tracing can be enhanced by rapidly integrating dynamic location data and demographic data. Projecting billions of longitude and latitude locations onto hundreds of thousands of highly irregular demographic census block polygons is computationally challenging in both research and deployment contexts. This paper describes two approaches labeled "simple" and "fast". The simple approach can be implemented in any scripting language (Matlab/Octave, Python, Julia, R) and is easily integrated and customized to a variety of research goals. This simple approach uses a novel combination of hierarchy, sparse bounding boxes, polygon crossing-number, vectorization, and parallel processing to achieve 100,000,000+ projections per second on 100 servers. The simple approach is compact, does not increase data storage requirements, and is applicable to any country or region. The fast approach exploits the thread, vector, and memory optimizations that are possible using a low-level language (C++) and achieves similar performance on a single server. This paper details these approaches with the goal of enabling the broader community to quickly integrate location and demographic data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源